
MATLAB® 7
Programming Fundamentals

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
MATLAB Programming Fundamentals
© COPYRIGHT 1984–2009 by The MathWorks™, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)

Contents

Classes (Data Types)

1
Overview of MATLAB Classes . 1-2
Fundamental MATLAB Classes . 1-2
How to Use the Different Classes . 1-4

Numeric Classes . 1-6
Overview . 1-6
Integers . 1-6
Floating-Point Numbers . 1-14
Complex Numbers . 1-24
Infinity and NaN . 1-25
Identifying Numeric Classes . 1-27
Display Format for Numeric Values 1-27
Function Summary . 1-29

Logical Classes . 1-33
Overview of Logical Classes . 1-33
Identifying Logical Arrays . 1-34
Functions that Return a Logical Result 1-35
Using Logical Arrays in Conditional Statements 1-37
Using Logical Arrays in Indexing . 1-38

Characters and Strings . 1-39
Creating Character Arrays . 1-39
Cell Arrays of Strings . 1-44
Formatting Strings . 1-46
String Comparisons . 1-59
Searching and Replacing . 1-62
Converting from Numeric to String 1-63
Converting from String to Numeric 1-65
Function Summary . 1-67

Structures . 1-70
What Is a Structure? . 1-70
Creating a Structure . 1-72

v

Structure Fields . 1-79
Indexing into a Struct Array . 1-82
Returning Data from a Struct Array 1-84
Using Structures with Functions . 1-88
Converting Between Struct Array and Cell Array 1-90
Organizing Data in Structure Arrays 1-92
Operator Summary . 1-97
Function Summary . 1-98

Cell Arrays . 1-101
What Is a Cell Array? . 1-101
Cell Array Operations . 1-103
Creating a Cell Array . 1-103
Concatenating Cell Arrays . 1-108
Indexing into a Cell Array . 1-109
Assigning Values to a Cell Array . 1-113
Returning Data from a Cell Array . 1-114
Using Cell Arrays with Functions . 1-118
Converting Between Cell Array and Struct Array 1-120
Operator Summary . 1-122
Function Summary . 1-123

Function Handles . 1-126
Overview . 1-126
Creating a Function Handle . 1-126
Calling a Function Using Its Handle 1-129
Handling Values Returned From a Call 1-130
Applications of Function Handles . 1-131
Saving and Loading Function Handles 1-136
Advanced Operations on Function Handles 1-137
Functions That Operate on Function Handles 1-143

Map Containers . 1-144
Overview of the Map Data Structure 1-144
Description of the Map Class . 1-145
Creating a Map Object . 1-147
Examining the Contents of the Map 1-150
Reading and Writing Using a Key Index 1-151
Modifying Keys and Values in the Map 1-154
Mapping to Different Value Types . 1-157

Combining Unlike Classes . 1-159

vi Contents

Combining Unlike Integer Types . 1-160
Combining Integer and Noninteger Data 1-162
Empty Matrices . 1-162
Concatenation Examples . 1-162

Defining Your Own Classes . 1-165

Basic Program Components

2
MATLAB Commands . 2-2
Basic Command Syntax . 2-2
Entering More Than One Command on a Line 2-3
Assigning to Multiple Outputs . 2-3
Commands that Call MATLAB Functions 2-5

Expressions . 2-6
String Evaluation . 2-6
Shell Escape Functions . 2-7

Variables . 2-9
Types of Variables . 2-9
Naming Variables . 2-13
Guidelines to Using Variables . 2-17
Scope of a Variable . 2-17
Lifetime of a Variable . 2-19

Keywords . 2-20

Special Values . 2-21

Operators . 2-23
Arithmetic Operators . 2-23
Relational Operators . 2-24
Logical Operators . 2-25
Operator Precedence . 2-32

vii

Comma-Separated Lists . 2-34
What Is a Comma-Separated List? 2-34
Generating a Comma-Separated List 2-34
Assigning Output from a Comma-Separated List 2-36
Assigning to a Comma-Separated List 2-37
How to Use the Comma-Separated Lists 2-38
Fast Fourier Transform Example . 2-40

Program Control Statements . 2-42
Conditional Control — if, switch . 2-42
Loop Control — for, while, continue, break 2-46
Error Control — try, catch . 2-49
Program Termination — return . 2-50

Dates and Times . 2-51
Overview . 2-51
Types of Date Formats . 2-51
Conversions Between Date Formats 2-53
Date String Formats . 2-54
Output Formats . 2-55
Current Date and Time . 2-56
Function Summary . 2-57

Regular Expressions . 2-59
Overview . 2-59
MATLAB Regular Expression Functions 2-60
Character Types . 2-61
Character Representation . 2-65
Grouping Operators . 2-66
Nonmatching Operators . 2-68
Positional Operators . 2-68
Lookaround Operators . 2-69
Quantifiers . 2-75
Tokens . 2-78
Named Capture . 2-83
Conditional Expressions . 2-85
Dynamic Regular Expressions . 2-88
String Replacement . 2-97
Handling Multiple Strings . 2-99
Operator Summary . 2-102

Symbol Reference . 2-109

viii Contents

Asterisk — * . 2-109
At — @ . 2-110
Colon — : . 2-111
Comma — , . 2-112
Curly Braces — { } . 2-113
Dot — . 2-113
Dot-Dot — .. 2-114
Dot-Dot-Dot (Ellipsis) — ... 2-114
Dot-Parentheses — .() . 2-115
Exclamation Point — ! . 2-116
Parentheses — () . 2-116
Percent — % . 2-116
Percent-Brace — %{ %} . 2-117
Semicolon — ; . 2-117
Single Quotes — ’ ’ . 2-118
Space Character . 2-119
Slash and Backslash — / \ . 2-119
Square Brackets — [] . 2-120

Internal MATLAB Functions . 2-121
Overview . 2-121
M-File Functions . 2-121
Built-In Functions . 2-122
Overloaded MATLAB Functions . 2-123

Functions and Scripts

3
Program Development . 3-2
Overview . 3-2
Creating a Program . 3-2
Getting the Bugs Out . 3-4
Cleaning Up the Program . 3-5
Improving Performance . 3-5
Checking It In . 3-6

Working with M-Files . 3-7
Overview . 3-7
Types of M-Files . 3-7
Basic Parts of an M-File . 3-8

ix

Creating a Simple M-File . 3-13
Providing Help for Your Program . 3-15
Cleaning Up the M-File When Done 3-16
Creating P-Code Files . 3-17

M-File Scripts and Functions . 3-19
M-File Scripts . 3-19
M-File Functions . 3-20
Types of Functions . 3-21
Organizing Your Functions . 3-22
Identifying Dependencies . 3-23

Calling Functions . 3-25
Command vs. Function Syntax . 3-25
What Happens When You Call a Function 3-34
Determining Which Function Gets Called 3-34
Calling External Functions . 3-37
Running External Programs . 3-38

Function Arguments . 3-39
Overview . 3-39
Passing Certain Argument Types . 3-39
Passing Arguments in Structures or Cell Arrays 3-41
Assigning Output Arguments . 3-43
Checking the Number of Input Arguments 3-45
Passing Variable Numbers of Arguments 3-47
Parsing Inputs with inputParser . 3-50
Passing Optional Arguments to Nested Functions 3-61
Returning Modified Input Arguments 3-64

Types of Functions

4
Overview of MATLAB Function Types 4-2

Anonymous Functions . 4-3
Constructing an Anonymous Function 4-3
Arrays of Anonymous Functions . 4-6
Outputs from Anonymous Functions 4-7

x Contents

Variables Used in the Expression . 4-8
Examples of Anonymous Functions 4-11

Primary M-File Functions . 4-15

Nested Functions . 4-16
Writing Nested Functions . 4-16
Calling Nested Functions . 4-18
Variable Scope in Nested Functions 4-19
Using Function Handles with Nested Functions 4-21
Restrictions on Assigning to Variables 4-26
Examples of Nested Functions . 4-27

Subfunctions . 4-33
Overview . 4-33
Calling Subfunctions . 4-34
Accessing Help for a Subfunction . 4-34

Private Functions . 4-35
Overview . 4-35
Private Directories . 4-35
Accessing Help for a Private Function 4-36

Overloaded Functions . 4-37

Using Objects

5
MATLAB Objects . 5-2
What Are Objects? . 5-2
Objects In the MATLAB Language 5-3
Other Kinds of Objects Used by MATLAB 5-3

General Purpose Vs. Specialized Arrays 5-5
How They Differ . 5-5
Using General-Purpose Variables . 5-5
Using Specialized Objects . 5-6

xi

Key Object Concepts . 5-8
Basic Concepts . 5-8
Classes Describe How to Create Objects 5-8
Properties Contain Data . 5-8
Methods Implement Operations . 5-9

Creating Objects . 5-11
Class Constructor . 5-11
When to Use Package Names . 5-11

Accessing Object Data . 5-14
Listing Public Properties . 5-14
Getting Property Values . 5-14
Setting Property Values . 5-15

Calling Object Methods . 5-16
What Operations Can You Perform 5-16
Method Syntax . 5-16
Class of Objects Returned by Methods 5-18

Desktop Tools Are Object Aware . 5-19
Tab Completion Works with Objects 5-19
Editing Objects with the Variable Editor 5-19

Getting Information About Objects 5-21
The Class of Workspace Variables . 5-21
Information About Class Members 5-23
Logical Tests for Objects . 5-23
Displaying Objects . 5-24
Getting Help for MATLAB Objects 5-25

Copying Objects . 5-26
Two Copy Behaviors . 5-26
Value Object Copy Behavior . 5-26
Handle Object Copy Behavior . 5-27
Testing for Handle or Value Class . 5-30

Destroying Objects . 5-31
Object Lifecycle . 5-31
Difference Between clear and delete 5-31

xii Contents

Data Import and Export

6
Overview . 6-2
Supported File Types . 6-2
Other MATLAB I/O Capabilities . 6-4
Functions Used in File Management 6-5

Supported File Formats . 6-7

Using the Import Wizard . 6-11
Overview . 6-11
Starting the Import Wizard . 6-11
Previewing Contents of the File or Clipboard [Text only] . . 6-13
Specifying Delimiters and Header Format [Text only] 6-15
Determining Assignment to Variables 6-16
Automated M-Code Generation . 6-19
Writing Data to the Workspace . 6-22

Exporting Data to MAT-Files . 6-24
MAT-Files . 6-24
Using the save Function . 6-24
Saving Structures . 6-25
Appending to an Existing File . 6-26
Data Compression . 6-26
Unicode Character Encoding . 6-28
Optional Output Formats . 6-29
Storage Requirements . 6-30
Saving from External Programs . 6-31

Importing Data From MAT-Files . 6-32
Using the load Function . 6-32
Previewing MAT-File Contents . 6-32
Loading Into a Structure . 6-33
Loading Binary Data . 6-33
Loading ASCII Data . 6-34

Importing Text Data . 6-35
The MATLAB Import Wizard . 6-35
Using Import Functions with Text Data 6-35
Importing Numeric Text Data . 6-37

xiii

Importing Delimited ASCII Data Files 6-38
Importing Mixed Alphabetic and Numeric Data 6-39
Importing from XML Documents . 6-42

Exporting Text Data . 6-44
Overview . 6-44
Exporting Delimited ASCII Data Files 6-46
Using the diary Function to Export Data 6-47
Exporting to XML Documents . 6-48

Working with Spreadsheets . 6-49
Microsoft® Excel Spreadsheets . 6-49
Lotus 123 Spreadsheets . 6-55

Working with Graphics Files . 6-59
Getting Information About Graphics Files 6-59
Importing Graphics Data . 6-60
Exporting Graphics Data . 6-60

Working with Audio and Video Data 6-62
Getting Information About Audio/Video Files 6-62
Importing Audio/Video Data . 6-62
Exporting Audio/Video Data . 6-64

Using Low-Level File I/O Functions 6-67
Overview . 6-67
Opening Files . 6-68
Reading Binary Data . 6-70
Writing Binary Data . 6-72
Controlling Position in a File . 6-72
Reading Strings Line by Line from Text Files 6-75
Reading Formatted ASCII Data . 6-76
Writing Formatted Text Files . 6-77
Closing a File . 6-78

Accessing Files with Memory-Mapping 6-80
Overview of Memory-Mapping . 6-80
The memmapfile Class . 6-84
Constructing a memmapfile Object 6-86
Reading a Mapped File . 6-100
Writing to a Mapped File . 6-105

xiv Contents

Methods of the memmapfile Class . 6-113
Deleting a Memory Map . 6-115
Memory-Mapping Demo . 6-116

Exchanging Files over the Internet 6-121
Overview . 6-121
Downloading Web Content and Files 6-121
Creating and Decompressing Zip Archives 6-123
Sending E-Mail . 6-124
Performing FTP File Operations . 6-126

Scientific Data File Formats
7

Common Data Format (CDF) Files 7-2
Getting Information About CDF Files 7-2
Importing Data from a CDF File . 7-3
Exporting Data to a CDF File . 7-6

Network Common Data Form (netCDF) Files 7-8
Overview . 7-8
Mapping netCDF API Syntax to MATLAB Function
Syntax . 7-9

Example: Exploring the Contents of a netCDF File 7-10
Example: Reading Data from a netCDF File 7-14
Example: Storing Data in a netCDF File 7-14

Flexible Image Transport System (FITS) Files 7-17
Getting Information About FITS Files 7-17
Importing Data from a FITS File . 7-18

Hierarchical Data Format (HDF5) Files 7-20
Using the MATLAB High-Level HDF5 Functions 7-20
Using the MATLAB Low-Level HDF5 Functions 7-36

Hierarchical Data Format (HDF4) Files 7-45
Using the HDF Import Tool . 7-45
Using the HDF Import Tool Subsetting Options 7-50
Using the MATLAB HDF4 High-Level Functions 7-62

xv

Using the HDF4 Low-Level Functions 7-65

Error Handling

8
Error Reporting in a MATLAB Application 8-2
Overview . 8-2
Getting an Exception at the Command Line 8-2
Getting an Exception in Your Program Code 8-3
Generating a New Exception . 8-4

Capturing Information About the Error 8-5
Overview . 8-5
The MException Class . 8-5
Properties of the MException Class 8-7
Methods of the MException Class . 8-14

Throwing an Exception . 8-16

Responding to an Exception . 8-17
Overview . 8-17
The try-catch Statement . 8-17
Suggestions on How to Handle an Exception 8-19

Warnings . 8-22
Reporting a Warning . 8-22
Identifying the Cause . 8-23

Warning Control . 8-24
Overview . 8-24
Warning Statements . 8-25
Warning Control Statements . 8-26
Output from Control Statements . 8-28
Saving and Restoring State . 8-30
Backtrace and Verbose Modes . 8-31

Debugging Errors and Warnings . 8-34

xvi Contents

Program Scheduling

9
Using a MATLAB Timer Object . 9-2
Overview . 9-2
Example: Displaying a Message . 9-3

Creating Timer Objects . 9-5
Creating the Object . 9-5
Naming the Object . 9-6

Working with Timer Object Properties 9-7
Retrieving the Value of Timer Object Properties 9-7
Setting the Value of Timer Object Properties 9-8

Starting and Stopping Timers . 9-10
Starting a Timer . 9-10
Starting a Timer at a Specified Time 9-10
Stopping Timer Objects . 9-11
Blocking the MATLAB Command Line 9-12

Creating and Executing Callback Functions 9-14
Associating Commands with Timer Object Events 9-14
Creating Callback Functions . 9-15
Specifying the Value of Callback Function Properties 9-17

Timer Object Execution Modes . 9-19
Executing a Timer Callback Function Once 9-19
Executing a Timer Callback Function Multiple Times 9-20
Handling Callback Function Queuing Conflicts 9-21

Deleting Timer Objects from Memory 9-23
Deleting One or More Timer Objects 9-23
Testing the Validity of a Timer Object 9-23

Finding Timer Objects in Memory 9-24
Finding All Timer Objects . 9-24
Finding Invisible Timer Objects . 9-24

xvii

Performance
10

Analyzing Your Program’s Performance 10-2
Overview . 10-2
The M-File Profiler Utility . 10-2
Stopwatch Timer Functions . 10-2

Techniques for Improving Performance 10-4
Vectorizing Loops . 10-4
Preallocating Arrays . 10-7
Use Distributed Arrays for Large Datasets 10-9
When Possible, Replace for with parfor (Parallel for) 10-9
Multithreading Capabilities in MATLAB 10-9
Limiting M-File Size and Complexity 10-9
Coding Loops in a MEX-File . 10-10
Assigning to Variables . 10-10
Operating on Real Data . 10-11
Using Appropriate Logical Operators 10-11
Overloading Built-In Functions . 10-12
Functions Are Generally Faster Than Scripts 10-12
Load and Save Are Faster Than File I/O Functions 10-12
Avoid Large Background Processes 10-12

MATLAB Multiprocessing . 10-13
Overview . 10-13
Implicit Multiprocessing . 10-14
Explicit Multiprocessing . 10-16

Memory Usage

11
Memory Allocation . 11-2
Memory Allocation for Arrays . 11-2
Data Structures and Memory . 11-7

Memory Management Functions . 11-12
The whos Function . 11-13

xviii Contents

Strategies for Efficient Use of Memory 11-14
Ways to Reduce the Amount of Memory Required 11-14
Using Appropriate Data Storage . 11-16
How to Avoid Fragmenting Memory 11-19
Reclaiming Used Memory . 11-21

Resolving “Out of Memory” Errors 11-22
General Suggestions for Reclaiming Memory 11-22
Setting the Process Limit . 11-23
Disabling Java VM on Startup . 11-24
Increasing System Swap Space . 11-25
Using the 3GB Switch on Windows Systems 11-26
Freeing Up System Resources on Windows Systems 11-26

Programming Tips

12
Introduction . 12-2

Command and Function Syntax . 12-3
Syntax Help . 12-3
Command and Function Syntaxes . 12-3
Command Line Continuation . 12-3
Completing Commands Using the Tab Key 12-4
Recalling Commands . 12-4
Clearing Commands . 12-5
Suppressing Output to the Screen . 12-5

Help . 12-6
Using the Help Browser . 12-6
Help on Functions from the Help Browser 12-7
Help on Functions from the Command Window 12-7
Topical Help . 12-7
Paged Output . 12-8
Writing Your Own Help . 12-8
Help for Subfunctions and Private Functions 12-9
Help for Methods and Overloaded Functions 12-9

Development Environment . 12-10

xix

Workspace Browser . 12-10
Using the Find and Replace Utility 12-10
Commenting Out a Block of Code . 12-11
Creating M-Files from Command History 12-11
Editing M-Files in EMACS . 12-11

M-File Functions . 12-12
M-File Structure . 12-12
Using Lowercase for Function Names 12-12
Getting a Function’s Name and Path 12-13
What M-Files Does a Function Use? 12-13
Dependent Functions, Built-Ins, Classes 12-14

Function Arguments . 12-15
Getting the Input and Output Arguments 12-15
Variable Numbers of Arguments . 12-15
String or Numeric Arguments . 12-16
Passing Arguments in a Structure . 12-16
Passing Arguments in a Cell Array 12-17

Program Development . 12-18
Planning the Program . 12-18
Using Pseudo-Code . 12-18
Selecting the Right Data Structures 12-18
General Coding Practices . 12-19
Naming a Function Uniquely . 12-19
The Importance of Comments . 12-19
Coding in Steps . 12-20
Making Modifications in Steps . 12-20
Functions with One Calling Function 12-20
Testing the Final Program . 12-20

Debugging . 12-21
The MATLAB Debug Functions . 12-21
More Debug Functions . 12-21
The MATLAB Graphical Debugger 12-22
A Quick Way to Examine Variables 12-22
Setting Breakpoints from the Command Line 12-23
Finding Line Numbers to Set Breakpoints 12-23
Stopping Execution on an Error or Warning 12-23
Locating an Error from the Error Message 12-23
Using Warnings to Help Debug . 12-24

xx Contents

Making Code Execution Visible . 12-24
Debugging Scripts . 12-24

Variables . 12-25
Rules for Variable Names . 12-25
Making Sure Variable Names Are Valid 12-25
Do Not Use Function Names for Variables 12-26
Checking for Reserved Keywords . 12-26
Avoid Using i and j for Variables . 12-27
Avoid Overwriting Variables in Scripts 12-27
Persistent Variables . 12-27
Protecting Persistent Variables . 12-27
Global Variables . 12-28

Strings . 12-29
Creating Strings with Concatenation 12-29
Comparing Methods of Concatenation 12-29
Store Arrays of Strings in a Cell Array 12-30
Converting Between Strings and Cell Arrays 12-30
Search and Replace Using Regular Expressions 12-31

Evaluating Expressions . 12-32
Find Alternatives to Using eval . 12-32
Assigning to a Series of Variables . 12-32
Short-Circuit Logical Operators . 12-33
Changing the Counter Variable within a for Loop 12-33

MATLAB Path . 12-34
Precedence Rules . 12-34
File Precedence . 12-35
Adding a Directory to the Search Path 12-35
Handles to Functions Not on the Path 12-35
Making Toolbox File Changes Visible to MATLAB 12-36
Making Nontoolbox File Changes Visible to MATLAB 12-37
Change Notification on Windows . 12-37

Program Control . 12-38
Using break, continue, and return . 12-38
Using switch Versus if . 12-39
MATLAB case Evaluates Strings . 12-39
Multiple Conditions in a case Statement 12-39
Implicit Break in switch-case . 12-39

xxi

Variable Scope in a switch . 12-40
Catching Errors with try-catch . 12-40
Nested try-catch Blocks . 12-41
Forcing an Early Return from a Function 12-41

Save and Load . 12-42
Saving Data from the Workspace . 12-42
Loading Data into the Workspace . 12-42
Viewing Variables in a MAT-File . 12-43
Appending to a MAT-File . 12-43
Save and Load on Startup or Quit . 12-44
Saving to an ASCII File . 12-44

Files and Filenames . 12-45
Naming M-files . 12-45
Naming Other Files . 12-45
Passing Filenames as Arguments . 12-46
Passing Filenames to ASCII Files . 12-46
Determining Filenames at Run-Time 12-46
Returning the Size of a File . 12-46

Input/Output . 12-48
File I/O Function Overview . 12-48
Common I/O Functions . 12-48
Readable File Formats . 12-49
Using the Import Wizard . 12-49
Loading Mixed Format Data . 12-49
Reading Files with Different Formats 12-50
Interactive Input into Your Program 12-50

Starting MATLAB . 12-51
Getting MATLAB to Start Up Faster 12-51

Operating System Compatibility . 12-52
Executing O/S Commands from MATLAB 12-52
Searching Text with grep . 12-52
Constructing Paths and Filenames 12-52
Finding the MATLAB Root Directory 12-53
Temporary Directories and Filenames 12-53

Demos . 12-54

xxii Contents

Demos Available with MATLAB . 12-54

For More Information . 12-55
Current CSSM . 12-55
Archived CSSM . 12-55
MATLAB Technical Support . 12-55
Tech Notes . 12-55
MATLAB Central . 12-55
MATLAB Newsletters (Digest, News & Notes) 12-55
MATLAB Documentation . 12-56
MATLAB Index of Examples . 12-56

Index

xxiii

xxiv Contents

1

Classes (Data Types)

• “Overview of MATLAB Classes” on page 1-2

• “Numeric Classes” on page 1-6

• “Logical Classes” on page 1-33

• “Characters and Strings” on page 1-39

• “Structures” on page 1-70

• “Cell Arrays” on page 1-101

• “Function Handles” on page 1-126

• “Map Containers” on page 1-144

• “Combining Unlike Classes” on page 1-159

• “Defining Your Own Classes” on page 1-165

1 Classes (Data Types)

Overview of MATLAB Classes

In this section...

“Fundamental MATLAB Classes” on page 1-2
“How to Use the Different Classes” on page 1-4

Fundamental MATLAB Classes
There are many different data types, or classes, that you can work with in the
MATLAB® software. You can build matrices and arrays of floating-point
and integer data, characters and strings, and logical true and false states.
Function handles connect your code with any MATLAB function regardless
of the current scope. Structures and cell arrays, provide a way to store
dissimilar types of data in the same array.

There are 15 fundamental classes in MATLAB. Each of these classes is in the
form of a matrix or array. This matrix or array is a minimum of 0-by-0 in size
and can grow to an n-dimensional array of any size.

All of the fundamental MATLAB classes are circled in the diagram below:

1-2

Overview of MATLAB® Classes

Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

You can create two-dimensional double and logical matrices using one of
two storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required

1-3

1 Classes (Data Types)

for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems

These classes require different amounts of storage, the smallest being a
logical value or 8–bit integer which requires only 1 byte. It is important to
keep this minimum size in mind if you work on data in files that were written
using a precision smaller than 8 bits.

How to Use the Different Classes
The following table describes these classes in more detail.

Class Name Documentation Intended Use

double, single Floating-Point
Numbers

• Required for fractional numeric data.

• Double and Single precision.

• Range = 2.2251e-308 to 1.7977e+308.

• Two-dimensional arrays can be sparse.

• Default numeric type in MATLAB.
int8, uint8,
int16,
uint16,
int32,
uint32,
int64, uint64

Integers • Use for signed and unsigned whole numbers.

• More efficient use of memory.

• Range = -263 to 263-1 (64 bit), -231 to 231-1 (32 bit)

• Choose from 4 sizes (8, 16, 32, and 64 bits).

• Use all but 64-bit in mathematics operations.

char “Characters and
Strings” on page
1-39

• Required for text.

• Native or unicode.

• Converts to/from numeric.

• Use with regular expressions.

• For multiple strings, use cell arrays.

1-4

Overview of MATLAB® Classes

Class Name Documentation Intended Use

logical Logical Classes • Use in relational conditions or to test state.

• Can have one of two values: true or false.

• Also useful in array indexing.

• Two-dimensional arrays can be sparse.
function_handle “Function

Handles” on page
1-126

• Pointer to a function.

• Enables passing a function to another function

• Can also call functions outside usual scope.

• Useful in Handle Graphics callbacks.

• Save to MAT-file and restore later.

struct Structures • Fields store arrays of varying classes and sizes.

• Access multiple fields/indices in single operation.

• Field names identify contents.

• Simple method of passing function arguments.

• Use in comma-separated lists for efficiency.

• More memory required for overhead
cell Cell Arrays • Cells store arrays of varying classes and sizes.

• Allows freedom to package data as you want.

• Manipulation of elements is similar to arrays.

• Simple method of passing function arguments.

• Use in comma-separated lists for efficiency.

• More memory required for overhead

1-5

1 Classes (Data Types)

Numeric Classes

In this section...

“Overview” on page 1-6
“Integers” on page 1-6
“Floating-Point Numbers” on page 1-14
“Complex Numbers” on page 1-24
“Infinity and NaN” on page 1-25
“Identifying Numeric Classes” on page 1-27
“Display Format for Numeric Values” on page 1-27
“Function Summary” on page 1-29

Overview
Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting and
reshaping. All numeric types except for int64 and uint64 can be used in
mathematical operations.

Integers
MATLAB has four signed and four unsigned integer classes. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit
is used to designate a positive or negative sign for the number. Unsigned
types give you a wider range of numbers, but these numbers can only be
zero or positive.

This section covers:

1-6

Numeric Classes

• “Creating Integer Data” on page 1-7

• “Arithmetic Operations on Integer Classes” on page 1-9

• “Largest and Smallest Values for Integer Classes” on page 1-9

• “Warnings for Integer Classes” on page 1-10

• “Integer Functions” on page 1-13

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can
save memory and execution time for your programs if you use the smallest
integer type that accommodates your data. For example, you don’t need a
32-bit integer to store the value 100.

Here are the eight integer classes, the range of values you can store with each
type, and the MATLAB conversion function required to create that type:

Class Range of Values Conversion Function

Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uint8

Unsigned 16-bit integer 0 to 216-1 uint16

Unsigned 32-bit integer 0 to 232-1 uint32

Unsigned 64-bit integer 0 to 264-1 uint64

Creating Integer Data
MATLAB stores numeric data as double-precision floating point (double)
by default. To store data as an integer, you need to convert from double to
the desired integer type. Use one of the conversion functions shown in the
table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

1-7

1 Classes (Data Types)

x = int16(325);

If the number being converted to an integer has a fractional part, MATLAB
rounds to the nearest integer. If the fractional part is exactly 0.5, then from
the two equally nearby integers, MATLAB chooses the one for which the
absolute value is larger in magnitude:

x = 325.499; x = x + .001;

int16(x) int16(x)
ans = ans =

325 326

If you need to round a number using a rounding scheme other than the
default, MATLAB provides four rounding functions: round, fix, floor, and
ceil. In this example, the fix function enables you to override the default
and round towards zero when the fractional part of a number is .5:

x = 325.5;

int16(fix(x))
ans =

325

Arithmetic operations that involve both integers and floating-point always
result in an integer data type. MATLAB rounds the result, when necessary,
according to the default rounding algorithm. The example below yields an
exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =

1427

The integer conversion functions are also useful when converting other
classes, such as strings, to integers:

str = 'Hello World';

int8(str)
ans =

1-8

Numeric Classes

72 101 108 108 111 32 87 111 114 108 100

Arithmetic Operations on Integer Classes
MATLAB can perform integer arithmetic on the following types of data:

• Integers or integer arrays of the same integer data type. This yields a
result that has the same data type as the operands:

x = uint32([132 347 528]) .* uint32(75);

• Integers or integer arrays and scalar double-precision floating-point
numbers. This yields a result that has the same data type as the integer
operands:

x = uint32([132 347 528]) .* 75.49;

For all binary operations in which one operand is an array of integer data
type and the other is a scalar double, MATLAB computes the operation using
elementwise double-precision arithmetic, and then converts the result back to
the original integer data type.

For a list of the operations that support integer classes, see Nondouble Data
Type Support in the arithmetic operators reference page.

Largest and Smallest Values for Integer Classes
For each integer data type, there is a largest and smallest number that you
can represent with that type. The table shown under “Integers” on page 1-6
lists the largest and smallest values for each integer data type in the “Range
of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8') intmin('int8')
ans = ans =

127 -128

If you convert a number that is larger than the maximum value of an integer
data type to that type, MATLAB sets it to the maximum value. Similarly, if

1-9

1 Classes (Data Types)

you convert a number that is smaller than the minimum value of the integer
data type, MATLAB sets it to the minimum value. For example,

x = int8(300) x = int8(-300)
x = x =

127 -128

Also, when the result of an arithmetic operation involving integers exceeds
the maximum (or minimum) value of the data type, MATLAB sets it to the
maximum (or minimum) value:

x = int8(100) * 3 x = int8(-100) * 3
x = x =

127 -128

You can make MATLAB return a warning when your input is outside the
range an integer data type. This is described in the next section.

Warnings for Integer Classes
Use the intwarning function to make MATLAB return a warning message
when it converts a number outside the range of an integer data type to that
type, or when the result of an arithmetic operation overflows. There are four
possible warning messages that you can turn on using intwarning:

Message Identifier Reason for Warning

MATLAB:intConvertOverflow Overflow when attempting to convert from
a numeric class to an integer class

MATLAB:intMathOverflow Overflow when attempting an integer
arithmetic operation

MATLAB:intConvertNonIntVal Attempt to convert a noninteger value to
an integer

MATLAB:intConvertNaN Attempt to convert NaN (Not a Number)
to an integer

Querying the Present Warning State. Use the following command to
display the state of all integer warnings:

1-10

Numeric Classes

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'off'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.
The state of warning 'MATLAB:intMathOverflow' is 'off'.

To display the state of one or more selected warnings, index into the structure
returned by intwarning. This example shows the current state of the
intConvertOverflow warning:

iwState = intwarning('query');
iwState(3)
ans =

identifier: 'MATLAB:intConvertOverflow'
state: 'off'

Turning the Warning On. To enable all four integer warnings, use
intwarning with the string 'on':

intwarning('on');
intwarning('query')

The state of warning 'MATLAB:intConvertNaN' is 'on'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'on'.
The state of warning 'MATLAB:intConvertOverflow' is 'on'.
The state of warning 'MATLAB:intMathOverflow' is 'on'.

To enable one or more selected integer warnings, first make sure that all
integer warnings are disabled:

intwarning('off');

Note that, in this state, the following conversion to a 16-bit integer overflows,
but does not issue a warning:

x = int16(50000)
x =

32767

Find which of the four warnings covers integer conversion. In this case, it
is the third in the structure array:

1-11

1 Classes (Data Types)

iwState = intwarning('query');
iwState(3).identifier
ans =

MATLAB:intConvertOverflow

Set the warning state to 'on' in the structure, and then call intwarning
using the structure as input:

iwState(3).state = 'on';
intwarning(iwState);

With the warning enabled, the overflow on conversion does issue the warning
message:

x = int16(50000)
Warning: Out of range value converted to intmin('int16') or
intmax('int16').
x =

32767

You can also use the following for loop to enable integer warnings selectively:

maxintwarn = 4;

for k = 1:maxintwarn
if strcmp(iwState(k).identifier, 'MATLAB:intConvertOverflow')

iwState(k).state = 'on';
intwarning(iwState);

end
end

Turning the Warning Off. To turn all integer warnings off (their default
state when you start MATLAB), enter

intwarning('off')

To disable selected integer warnings, follow the steps shown for enabling
warnings, but with the state field of the structure set to 'off':

iwState(3).identifier
ans =

1-12

Numeric Classes

MATLAB:intConvertOverflow

iwState(3).state = 'off';
intwarning(iwState);

Turning Warnings On or Off Temporarily. When writing M-files that
contain integer classes, it is sometimes convenient to temporarily turn integer
warnings on, and then return the states of the warnings ('on' or 'off') to
their previous settings. The following commands illustrate how to do this:

oldState = intwarning('on');

int8(200);
Warning: Out of range value converted to intmin('int8') or
intmax('int8').

intwarning(oldState)

To temporarily turn the warnings off, change the first line of the preceding
code to

oldState = intwarning('off');

Recommended Usage of Math Overflow Warning. Enabling the
MATLAB:intMathOverflow warning slows down integer arithmetic. It is
recommended that you enable this particular warning only when you need
to diagnose unusual behavior in your code, and disable it during normal
program operation. The other integer warnings listed above do not affect
program performance.

Note that calling intwarning('on') enables all four integer warnings,
including the intMathOverflow warning that can have an effect on integer
arithmetic.

Integer Functions
See Integer Functions on page 1-30 for a list of functions most commonly used
with integers in MATLAB.

1-13

1 Classes (Data Types)

Floating-Point Numbers
MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make
any number single precision with a simple conversion function.

This section covers:

• “Double-Precision Floating Point” on page 1-14

• “Single-Precision Floating Point” on page 1-15

• “Creating Floating-Point Data” on page 1-15

• “Arithmetic Operations on Floating-Point Numbers” on page 1-17

• “Largest and Smallest Values for Floating-Point Classes” on page 1-18

• “Accuracyof Floating-Point Data” on page 1-19

• “Avoiding Common Problems with Floating-Point Arithmetic” on page 1-21

• “Floating-Point Functions” on page 1-23

• “References” on page 1-23

Double-Precision Floating Point
MATLAB constructs the double-precision (or double) data type according
to IEEE® Standard 754 for double precision. Any value stored as a double
requires 64 bits, formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)
62 to 52 Exponent, biased by 1023
51 to 0 Fraction f of the number 1.f

1-14

Numeric Classes

Single-Precision Floating Point
MATLAB constructs the single-precision (or single) data type according
to IEEE Standard 754 for single precision. Any value stored as a single
requires 32 bits, formatted as shown in the table below:

Bits Usage

31 Sign (0 = positive, 1 = negative)
30 to 23 Exponent, biased by 127
22 to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However,
because they are stored with fewer bits, numbers of type single are
represented to less precision than numbers of type double.

Creating Floating-Point Data
Use double-precision to store values greater than approximately 3.4 x 1038
or less than approximately -3.4 x 1038. For numbers that lie between these
two limits, you can use either double- or single-precision, but single requires
less memory.

Creating Double-Precision Data. Because the default numeric type
for MATLAB is double, you can create a double with a simple assignment
statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos x
Name Size Bytes Class

x 1x1 8 double

Use isfloat if you just want to verify that x is a floating-point number. This
function returns logical 1 (true) if the input is a floating-point number, and
logical 0 (false) otherwise:

1-15

1 Classes (Data Types)

isfloat(x)
ans =

1

You can convert other numeric data, characters or strings, and logical data to
double precision using the MATLAB function, double. This example converts
a signed integer to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double
x =

-5.8932e+011

Creating Single-Precision Data. Because MATLAB stores numeric data as
a double by default, you need to use the single conversion function to create
a single-precision number:

x = single(25.783);

The whos function returns the attributes of variable x in a structure. The
bytes field of this structure shows that when x is stored as a single, it requires
just 4 bytes compared with the 8 bytes to store it as a double:

xAttrib = whos('x');
xAttrib.bytes
ans =

4

You can convert other numeric data, characters or strings, and logical data to
single precision using the single function. This example converts a signed
integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single
x =

-5.8932e+011

1-16

Numeric Classes

Arithmetic Operations on Floating-Point Numbers
This section describes which classes you can use in arithmetic operations
with floating-point numbers.

Double-Precision Operations. You can perform basic arithmetic operations
with double and any of the following other classes. When one or more
operands is an integer (scalar or array), the double operand must be a scalar.
The result is of type double, except where noted otherwise:

• single — The result is of type single

• double

• int* or uint*— The result has the same data type as the integer operand

• char

• logical

This example performs arithmetic on data of types char and double. The
result is of type double:

c = 'uppercase' - 32;

class(c)
ans =

double

char(c)
ans =

UPPERCASE

Single-Precision Operations. You can perform basic arithmetic operations
with single and any of the following other classes. The result is always
single:

• single

• double

• char

• logical

1-17

1 Classes (Data Types)

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =

single

Largest and Smallest Values for Floating-Point Classes
For the double and single classes, there is a largest and smallest number
that you can represent with that type.

Largest and Smallest Double-Precision Values. The MATLAB functions
realmax and realmin return the maximum and minimum values that you
can represent with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =
The range for double is:

-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =

Inf

-realmax - .0001e+308
ans =

-Inf

Largest and Smallest Single-Precision Values. The MATLAB functions
realmax and realmin, when called with the argument 'single', return the
maximum and minimum values that you can represent with the single data
type:

1-18

Numeric Classes

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'), ...

realmin('single'), realmax('single'))

ans =
The range for single is:

-3.40282e+038 to -1.17549e-038 and
1.17549e-038 to 3.40282e+038

Numbers larger than realmax(’single’) or smaller than -realmax (’single’) are
assigned the values of positive and negative infinity, respectively:

realmax('single') + .0001e+038
ans =

Inf

-realmax('single') - .0001e+038
ans =

-Inf

Accuracyof Floating-Point Data
If the result of a floating-point arithmetic computation is not as precise as
you had expected, it is likely caused by the limitations of your computer’s
hardware. Probably, your result was a little less exact because the hardware
had insufficient bits to represent the result with perfect accuracy; therefore, it
truncated the resulting value.

Double-Precision Accuracy. Because there are only a finite number
of double-precision numbers, you cannot represent all numbers in
double-precision storage. On any computer, there is a small gap between each
double-precision number and the next larger double-precision number. You
can determine the size of this gap, which limits the precision of your results,
using the eps function. For example, to find the distance between 5 and the
next larger double-precision number, enter

format long

eps(5)
ans =

1-19

1 Classes (Data Types)

8.881784197001252e-016

This tells you that there are no double-precision numbers between 5 and
5 + eps(5). If a double-precision computation returns the answer 5, the
result is only accurate to within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger,
so does eps(x):

eps(50)
ans =

7.105427357601002e-015

If you enter eps with no input argument, MATLAB returns the value of
eps(1), the distance from 1 to the next larger double-precision number.

Single-Precision Accuracy. Similarly, there are gaps between any two
single-precision numbers. If x has type single, eps(x) returns the distance
between x and the next larger single-precision number. For example,

x = single(5);
eps(x)

returns

ans =
4.7684e-007

Note that this result is larger than eps(5). Because there are fewer
single-precision numbers than double-precision numbers, the gaps
between the single-precision numbers are larger than the gaps between
double-precision numbers. This means that results in single-precision
arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound
for the amount that x is rounded when you convert it from double to single.
For example, when you convert the double-precision number 3.14 to single,
it is rounded by

double(single(3.14) - 3.14)
ans =

1-20

Numeric Classes

1.0490e-007

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =

2.3842e-007

Avoiding Common Problems with Floating-Point Arithmetic
Almost all operations in MATLAB are performed in double-precision
arithmetic conforming to the IEEE standard 754. Because computers only
represent numbers to a finite precision (double precision calls for 52 mantissa
bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You Expect.
The decimal number 4/3 is not exactly representable as a binary fraction. For
this reason, the following calculation does not give zero, but rather reveals
the quantity eps.

e = 1 - 3*(4/3 - 1)

e =
2.2204e-016

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get
the following nonintuitive behavior:

a = 0.0;
for i = 1:10

a = a + 0.1;
end
a == 1

ans =
0

1-21

1 Classes (Data Types)

Note that the order of operations can matter in the computation:

b = 1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b == c

ans =
0

There are gaps between floating-point numbers. As the numbers get larger, so
do the gaps, as evidenced by:

(2^53 + 1) - 2^53

ans =
0

Since pi is not really pi, it is not surprising that sin(pi) is not exactly zero:

sin(pi)

ans =
1.224646799147353e-016

Example 2 — Catastrophic Cancellation. When subtractions are
performed with nearly equal operands, sometimes cancellation can occur
unexpectedly. The following is an example of a cancellation caused by
swamping (loss of precision that makes the addition insignificant).

sqrt(1e-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expm1 and log1p, may be used to
compensate for the effects of catastrophic cancellation.

1-22

Numeric Classes

Example 3 — Floating-Point Operations and Linear Algebra.
Round-off, cancellation, and other traits of floating-point arithmetic combine
to produce startling computations when solving the problems of linear
algebra. MATLAB warns that the following matrix A is ill-conditioned,
and therefore the system Ax = b may be sensitive to small perturbations.
Although the computation differs from what you expect in exact arithmetic,
the result is correct.

A = [2 eps -eps; eps 1 1; -eps 1 1];
b = [2; eps + 2; -eps + 2];
x = A\b

x =
1.0e+015 *
0.000000000000001
2.251799813685249

-2.251799813685247

These are only a few of the examples showing how IEEE floating-point
arithmetic affects computations in MATLAB. Note that all computations
performed in IEEE 754 arithmetic are affected, this includes applications
written in C or FORTRAN, as well as MATLAB. For more examples
and information, see Technical Note 1108 Common Problems with
Floating-Point Arithmetic.

Floating-Point Functions
See Floating-Point Functions on page 1-30 for a list of functions most
commonly used with floating-point numbers in MATLAB.

References
The following references provide more information about floating-point
arithmetic.

[1] Moler, Cleve, “Floating Points,” MATLAB News and Notes, Fall,
1996. A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

1-23

http://www.mathworks.com/support/tech-notes/1100/1108.html
http://www.mathworks.com/support/tech-notes/1100/1108.html

1 Classes (Data Types)

[2] Moler, Cleve, Numerical Computing with MATLAB, S.I.A.M.
A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/moler/.

Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

Creating Complex Numbers
The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

x = rand(3) * 5;
y = rand(3) * -8;

z = complex(x, y)
z =

4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using
the real and imag functions:

zr = real(z)
zr =

4.7842 0.8648 1.2616
2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

zi = imag(z)

1-24

Numeric Classes

zi =
-1.0921 -1.5931 -2.2753
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182

Complex Number Functions
See Complex Number Functions on page 1-31 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

Infinity and NaN
MATLAB uses the special values inf, -inf, and NaN to represent values that
are positive and negative infinity, and not a number respectively.

Infinity
MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large
to represent as conventional floating-point values. MATLAB also provides
a function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

x = 1/0
x =
Inf

x = 1.e1000
x =

Inf

x = exp(1000)
x =

Inf

x = log(0)
x =

-Inf

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)
ans =

1-25

1 Classes (Data Types)

1

NaN
MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN.

For example, the statement n/0, where n is complex, returns NaN for the
real part of the result:

x = 7i/0
x =

NaN + Infi

Use the isnan function to verify that the real part of x is NaN:

isnan(real(x))
ans =

1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

x = NaN;

whos x
Name Size Bytes Class

x 1x1 8 double

Logical Operations on NaN. Because two NaNs are not equal to each
other, logical operations involving NaN always return false, except for a test
for inequality, (NaN ~= NaN):

NaN > NaN
ans =

0

NaN ~= NaN

1-26

Numeric Classes

ans =
1

Infinity and NaN Functions
See Infinity and NaN Functions on page 1-31 for a list of functions most
commonly used with inf and NaN in MATLAB.

Identifying Numeric Classes
You can check the data type of a variable x using any of these commands.

Command Operation

whos x Display the data type of x.
xType = class(x); Assign the data type of x to a variable.
isnumeric(x) Determine if x is a numeric type.
isa(x, 'integer')
isa(x, 'uint64')
isa(x, 'float')
isa(x, 'double')
isa(x, 'single')

Determine if x is the specified numeric type.
(Examples for any integer, unsigned 64-bit integer,
any floating point, double precision, and single
precision are shown here).

isreal(x) Determine if x is real or complex.
isnan(x) Determine if x is Not a Number (NaN).
isinf(x) Determine if x is infinite.
isfinite(x) Determine if x is finite.

Display Format for Numeric Values
By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the
following:

• 5-digit scaled fixed point, floating point, or the best of the two

• 15-digit scaled fixed point, floating point, or the best of the two

1-27

1 Classes (Data Types)

• A ratio of small integers

• Hexadecimal (base 16)

• Bank notation

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or
the Preferences dialog box (accessible from the MATLAB File menu). The
format function changes the display of numeric values for the duration of a
single MATLAB session, while your Preferences settings remain active from
one session to the next. These settings affect only how numbers are displayed,
not how MATLAB computes or saves them.

Display Format Examples
Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:

get(0, 'format')
ans =

short

Set the value for x and display in 5-digit scaled fixed point:

x = [4/3 1.2345e-6]
x =

1.3333 0.0000

Set the format to 5-digit floating point:

format short e
x
x =

1.3333e+000 1.2345e-006

Set the format to 15-digit scaled fixed point:

format long

1-28

Numeric Classes

x
x =

1.33333333333333 0.00000123450000

Set the format to 'rational' for small integer ratio output:

format rational
x
x =

4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
x = uint32(876543210)
x =

343efcea

Setting Numeric Format in a Program
To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish
working with the new format, you can restore the original format setting
using the set function as shown here:

origFormat = get(0, 'format');
format('rational');

-- Work in rational format --

set(0,'format', origFormat);

Function Summary
MATLAB provides these functions for working with numeric classes:

• Integer Functions on page 1-30

• Floating-Point Functions on page 1-30

• Complex Number Functions on page 1-31

1-29

1 Classes (Data Types)

• Infinity and NaN Functions on page 1-31

• Class Identification Functions on page 1-32

• Output Formatting Functions on page 1-32

Integer Functions

Function Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

ceil Round towards plus infinity to nearest integer
class Return the data type of an object.
fix Round towards zero to nearest integer
floor Round towards minus infinity to nearest integer
isa Determine if input value has the specified data type.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.
round Round towards the nearest integer

Floating-Point Functions

Function Description

double Convert to double precision.
single Convert to single precision.
class Return the data type of an object.
isa Determine if input value has the specified data type.
isfloat Determine if input value is a floating-point array.
isnumeric Determine if input value is a numeric array.

1-30

Numeric Classes

Floating-Point Functions (Continued)

Function Description

eps Return the floating-point relative accuracy. This value
is the tolerance MATLAB uses in its calculations.

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your
computer can represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

i or j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.
imag Return the imaginary part of a complex number.
isreal Determine if a number is real or imaginary.

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.
isnan Detect NaN elements of an array.
isinf Detect infinite elements of an array.
isfinite Detect finite elements of an array.
nan Return the IEEE value for Not a Number.

1-31

1 Classes (Data Types)

Class Identification Functions

Function Description

class Return data type (or class).
isa Determine if input value is of the specified data type.
isfloat Determine if input value is a floating-point array.
isinteger Determine if input value is an integer array.
isnumeric Determine if input value is a numeric array.
isreal Determine if input value is real.
whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

1-32

Logical Classes

Logical Classes

In this section...

“Overview of Logical Classes” on page 1-33
“Identifying Logical Arrays” on page 1-34
“Functions that Return a Logical Result” on page 1-35
“Using Logical Arrays in Conditional Statements” on page 1-37
“Using Logical Arrays in Indexing” on page 1-38

Overview of Logical Classes
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was
found to be true or not. For example, the statement 50>40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of
logicals indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =

0 0 1 1 1

This statement returns a 4-by-4 array of logical values:

x = magic(4) >= 9
x =

1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a = [2.5 6.7 9.2 inf 4.8];

1-33

1 Classes (Data Types)

isfinite(a)
ans =

1 1 1 0 1

Logical arrays can also be sparse as long as they have no more than two
dimensions:

x = sparse(magic(20) > 395)
x =

(1,1) 1
(1,4) 1
(1,5) 1

(20,18) 1
(20,19) 1

Identifying Logical Arrays
This table shows the commands you can use to determine whether or not an
array x is logical. The last function listed, cellfun, operates on cell arrays,
which you can read about in the section on cell arrays.

Command Operation

whos(x) Display value and data type for x.
islogical(x) Return true if array is logical.
isa(x, 'logical') Return true if array is logical.
class(x) Return string with data type name.
cellfun('islogical', x) Check each cell array element for logical.

Examples of Identifying Logical Arrays
Create a 3-by-6 array of logicals and use the whos function to identify the size,
byte count, and class (i.e., data type) of the array.

% Initialize the state of the random number generator.
rand('state',0);
A = rand(3,6) > .5
A =

1-34

Logical Classes

1 0 0 0 1 0
0 1 0 1 1 1
1 1 1 1 0 1

whos A
Name Size Bytes Class Attributes

A 3x6 18 logical

Find the class of each of these expressions:

B = logical(-2.8); C = false; D = 50>40; E = isinteger(4.9);

whos B C D E
Name Size Bytes Class Attributes

B 1x1 1 logical
C 1x1 1 logical
D 1x1 1 logical
E 1x1 1 logical

Display the class of A:

% Initialize the state of the random number generator.
rand('state',0);
A = rand(3,6) > .5

fprintf('A is a %s\n', class(A))
A is a logical

Create cell array C and use islogical to identify the logical elements:

C = {1, 0, true, false, pi, A};
cellfun('islogical', C)
ans =

0 0 1 1 0 1

Functions that Return a Logical Result
This table shows some of the MATLAB operations that return a logical true
or false. Most mathematics operations are not supported on logical values.

1-35

1 Classes (Data Types)

Function Operation

true, false Setting value to true or false
logical Numeric to logical conversion
& (and), | (or), ~ (not), xor, any, all Logical operations
&&, || Short-circuit AND and OR
== (eq), ~= (ne), < (lt), > (gt), <= (le),
>= (ge)

Relational operations

All is* functions, cellfun Test operations
strcmp, strncmp, strcmpi, strncmpi String comparisons

Examples of Functions that Return a Logical Result
MATLAB functions that test the state of a variable or expression return
a logical result:

A = isstrprop('abc123def', 'alpha')
A =

1 1 1 0 0 0 1 1 1

Logical functions such as xor return a logical result:

xor([1 0 'ab' 2.4], [0 0 'ab', 0])
ans =

1 0 0 1

Note however that the bitwise operators do not return a logical:

X = bitxor(3, 12);
whos X

Name Size Bytes Class Attributes

X 1x1 8 double

String comparison functions also return a logical:

S = 'D:\matlab\mfiles\test19.m';
strncmp(S, 'D:\matlab', 9)
ans =

1-36

file:///B:/matlab/doc/src/toolbox/matlab/ref/is.html

Logical Classes

1

Note the difference between the elementwise and short-circuit logical
operators. Short-circuit operators, such as && and ||, test only as much of the
input expression as necessary. In the second part of this example, it makes
no difference that B is undefined because the state of A alone determines
that the expression is false:

A = 0;
A & B
??? Undefined function or variable 'B'.

A && B
ans =

0

One way of implementing an infinite loop is to use the while function along
with the logical constant true:

while true
a = []; b = [];
a = input('Enter username: ', 's');

if ~isempty(a)
b = input('Enter password: ', 's');
end

if ~isempty(b)
disp 'Attempting to log in to account ...'
break
end

end

Using Logical Arrays in Conditional Statements
Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string:

str = input('Enter input string: ', 's');
if ~isempty(str) && ischar(str)

sprintf('Input string is ''%s''', str)

1-37

1 Classes (Data Types)

end

Now run the code:

Enter input string: Hello
ans =

Input string is 'Hello'

Using Logical Arrays in Indexing
A logical matrix provides a different type of array indexing in MATLAB.
While most indices are numeric, indicating a certain row or column number,
logical indices are positional. That is, it is the position of each 1 in the logical
matrix that determines which array element is being referred to.

See “Using Logicals in Array Indexing” for more information on this subject.

1-38

Characters and Strings

Characters and Strings

In this section...

“Creating Character Arrays” on page 1-39
“Cell Arrays of Strings” on page 1-44
“Formatting Strings” on page 1-46
“String Comparisons” on page 1-59
“Searching and Replacing” on page 1-62
“Converting from Numeric to String” on page 1-63
“Converting from String to Numeric” on page 1-65
“Function Summary” on page 1-67

Creating Character Arrays

A character in the MATLAB software is actually an integer value converted
to its Unicode® character equivalent. A character string is a vector with
components that are the numeric codes for the characters. The actual
characters displayed depend on the character set encoding for a given font.

The elements of a character or string belong to the char class. Arrays of class
char can hold multiple strings, as long as each string in the array has the
same length. (This is because MATLAB arrays must be rectangular.) To store
an array of strings of unequal length, use a cell array.

Creating a Single Character
Store a single character in the MATLAB workspace by enclosing the character
in single quotation marks and assigning it to a variable:

hChar = 'h';

This creates a 1-by-1 matrix of class char. Each character occupies 2 bytes
of workspace memory:

whos hChar

1-39

1 Classes (Data Types)

Name Size Bytes Class Attributes

hChar 1x1 2 char

The numeric value of hChar is 104:

uint8(hChar)
ans =

104

Creating a Character String
Create a string by enclosing a sequence of letters in single quotation marks.
MATLAB represents the five-character string shown below as a 1-by-5 vector
of class char. It occupies 2 bytes of memory for each character in the string:

str = 'Hello';

whos str
Name Size Bytes Class Attributes

str 1x5 10 char

The uint8 function converts characters to their numeric values:

str_numeric = uint8(str)
str_numeric =

72 101 108 108 111

The char function converts the integer vector back to characters:

str_alpha = char([72 101 108 108 111])
str_alpha =

Hello

Creating an Array of Strings
Create an array of strings in the same way that you would create a numeric
array. Use the array constructor ([]), delimit each row in the array with a
semicolon, and enclose each string in single quotation marks. Like numeric

1-40

Characters and Strings

arrays, character arrays must be rectangular. That is, each row of the array
must be the same length:

name = ['Thomas R. Lee'; ...
'Sr. Developer'; ...
'SFTware Corp.'];

Padding Strings. To make an array from strings that are originally of
unequal length, you must either pad the shorter strings with space characters,
or use a cell array. If you choose to pad the strings, there are two ways to do
this. You can either add space characters manually, as shown here:

name = ['Harold A. Jorgensen '; ...
'Assistant Project Manager'; ...
'SFTware Corp. '];

or construct the array using the char function. This function automatically
pads the shorter strings with spaces at the end. This array now consists of
three strings of 25 characters each:

name = char('Harold A. Jorgensen', ...
'Assistant Project Manager', 'SFTware Corp.');

size(name)
ans =

3 25

Creating Character Arrays by Concatenation
You can join two or more character arrays together to create a new character
array. This is called concatenation and is explained for numeric arrays
in the section “Concatenating Matrices”. To do this, use either the string
concatenation function, strcat, or the MATLAB concatenation operator, [].
The latter method preserves any trailing spaces found in the input arrays;
the former method does not:

name = 'Thomas R. Lee';
title = 'Sr. Developer';
company = 'SFTware Corp.';

s = strcat(name, ', ', title, ', ', company);

1-41

file:///B:/matlab/doc/src/toolbox/matlab/ref/specialcharacters.html

1 Classes (Data Types)

s = [name, ', ', title, ', ', company];

To concatenate strings vertically, use either the strvcat function or the []
operator with semicolons separating the rows:

s = strvcat(name, title, company);
s = [name; title; company];

This command concatenates the value assigned to keyword matlabroot with
the remainder of a path string:

dir([matlabroot '\extern\examples\mex\yprime.c'])
yprime.c

Identifying Characters in a String
Use any of the following functions to identify a character or string, or certain
characters in a string:

Function Description

ischar Determine whether the input is a character array.
isletter Find all alphabetic letters in the input string.
isspace Find all space characters in the input string.
isstrprop Find all characters of a specific category.

str = 'Find the space characters in this string';
% | | | | | |
% 5 9 15 26 29 34

find(isspace(str))
ans =

5 9 15 26 29 34

Working with Space Characters
The blanks function creates a string of space characters. The following
example creates a string of 15 space characters:

s = blanks(15)

1-42

Characters and Strings

s =

To make the example more useful, append a '|' character to the beginning
and end of the blank string so that you can see the output:

['|' s '|'] % Make result visible.
ans =

| |

Insert a few nonspace characters in the middle of the blank string:

s(6:10) = 'AAAAA';

['|' s '|'] % Make result visible.
ans =

| AAAAA |

You can justify the positioning of these characters to the left or right using
the strjust function:

sLeft = strjust(s, 'left');

['|' sLeft '|'] % Make result visible.
ans =

|AAAAA |

sRight = strjust(s, 'right');

['|' sRight '|'] % Make result visible.
ans =

| AAAAA|

Remove all trailing space characters with deblank:

sDeblank = deblank(s);

['|' sDeblank '|'] % Make result visible.
ans =

| AAAAA|

1-43

1 Classes (Data Types)

Remove all leading and trailing spaces with strtrim:

sTrim = strtrim(s);

['|' sTrim '|'] % Make result visible.
ans =

|AAAAA|

Expanding Character Arrays
Generally the MathWorks does not recommend expanding the size of an
existing character array by assigning additional characters to indices beyond
the bounds of the array such that part of the array becomes padded with zeros.

Cell Arrays of Strings
Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at
the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.

For details on cell arrays, see Cell Arrays in the Programming Fundamentals
documentation.

Converting to a Cell Array of Strings
The cellstr function converts a character array into a cell array of strings.
Consider this character array:

data = ['Allison Jones';'Development ';'Phoenix '];

Each row of the matrix is padded so that all have equal length (in this case,
13 characters).

Now use cellstr to create a column vector of cells, each cell containing one
of the strings from the data array:

celldata = cellstr(data)
celldata =

1-44

Characters and Strings

'Allison Jones'
'Development'
'Phoenix'

Note that the cellstr function strips off the blanks that pad the rows of the
input string matrix:

length(celldata{3})
ans =

7

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)
ans =

1

Use char to convert back to a standard padded character array:

strings = char(celldata)
strings =

Allison Jones
Development
Phoenix

length(strings(3,:))
ans =

13

Functions for Cell Arrays of Strings
This table describes the MATLAB functions for working with cell arrays.

Function Description

cellstr Convert a character array to a cell array of strings.
char Convert a cell array of strings to a character array.
deblank Remove trailing blanks from a string.

1-45

1 Classes (Data Types)

Function Description

iscellstr Return true for acell array of strings.
sort Sort elements in ascending or descending order.
strcat Concatenate strings.
strcmp Compare strings.
strmatch Find possible matches for a string.

You can also use the following set functions with cell arrays of strings.

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.
setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.
unique Set the unique elements of a vector.

Formatting Strings
The following MATLAB functions offer the capability to compose a string that
includes ordinary text and data formatted to your specification:

• sprintf — Write formatted data to an output string

• fprintf—Write formatted data to an output file or the Command Window

• warning— Display formatted data in a warning message

• error— Display formatted data in an error message and abort

• assert— Generate an error when a condition is violated

The syntax of each of these functions includes formatting operators similar
to those used by the printf function in the C programming language. For
example, %s tells MATLAB to interpret an input value as a string, and %d
means to format an integer using decimal notation.

1-46

Characters and Strings

The general formatting syntax for these functions is

functionname(..., format_string, value1, value2, ..., valueN)

where the format_string argument expresses the basic content and
formatting of the final output string, and the value arguments that follow
supply data values to be inserted into the string.

Here is a sample sprintf statement, also showing the resulting output string:

sprintf('The price of %s on %d/%d/%d was $%.2f.', ...
'bread', 7, 1, 2006, 2.49)

ans =
The price of bread on 7/1/2006 was $2.49.

The following sections cover

• “The Format String” on page 1-47

• “Input Value Arguments” on page 1-48

• “The Formatting Operator” on page 1-50

• “Constructing the Formatting Operator” on page 1-50

• “Setting Field Width and Precision” on page 1-56

• “Restrictions for Using Identifiers” on page 1-58

Note The examples in this section of the documentation use only the sprintf
function to demonstrate how string formatting works. However, you can run
the examples using the fprintf, warning, and error functions as well.

The Format String
The first input argument in the sprintf statement shown above is the
format_string:

'The price of %s on %d/%d/%d was $%.2f.'

1-47

1 Classes (Data Types)

This argument can include ordinary text, formatting operators and, in some
cases, special characters. The formatting operators for this particular string
are: %s, %d, %d, %d, and %.2f.

Following the format_string argument are five additional input arguments,
one for each of the formatting operators in the string:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format string, it replaces each operator with
one of these input values.

Special Characters. Special characters are a part of the text in the string.
But, because they cannot be entered as ordinary text, they require a unique
character sequence to represent them. Use any of the following character
sequences to insert special characters into the output string.

To Insert a . . . Use . . .

Single quotation mark ''

Percent character %%

Backslash \\

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Hexadecimal number, N \xN

Octal number, N \N

Input Value Arguments
In the syntax

functionname(..., format_string, value1, value2, ..., valueN)

1-48

Characters and Strings

The value arguments must immediately follow format_string in the
argument list. In most instances, you supply one of these value arguments
for each formatting operator used in the format_string. Scalars, vectors,
and numeric and character arrays are valid value arguments. You cannot
use cell arrays or structures.

If you include fewer formatting operators than there are values to insert,
MATLAB reuses the operators on the additional values. This example shows
two formatting operators and six values to insert into the string:

sprintf('%s = %d\n', 'A', 479, 'B', 352, 'C', 651)
ans =

A = 479
B = 352
C = 651

You can also specify multiple value arguments as a vector or matrix. The
format_string needs one %s operator for the entire matrix or vector:

mvec = [77 65 84 76 65 66];

sprintf('%s ', char(mvec))
ans =

MATLAB

Sequential and Numbered Argument Specification.

You can place value arguments in the argument list either sequentially (that
is, in the same order in which their formatting operators appear in the string),
or by identifier (adding a number to each operator that identifies which value
argument to replace it with). By default, MATLAB uses sequential ordering.

To specify arguments by a numeric identifier, add a positive integer followed
by a $ sign immediately after the % sign in the operator. Numbered argument
specification is explained in more detail under the topic “Value Identifiers”
on page 1-55.

1-49

1 Classes (Data Types)

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

The Formatting Operator
Formatting operators tell MATLAB how to format the numeric or character
value arguments and where to insert them into the string. These operators
control the notation, alignment, significant digits, field width, and other
aspects of the output string.

A formatting operator begins with a % character, which may be followed by a
series of one or more numbers, characters, or symbols, each playing a role in
further defining the format of the insertion value. The final entry in this series
is a single conversion character that MATLAB uses to define the notation
style for the inserted data. Conversion characters used in MATLAB are based
on those used by the printf function in the C programming language.

Here is a simple example showing five formatting variations for a common
value:

A = pi*100*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)
ans =

314.159265 % Display in fixed-point notation (%f)
314.16 % Display 2 decimal digits (%.2f)
+314.16 % Display + for positive numbers (%+.2f)

314.16 % Set width to 12 characters (%12.2f)
000000314.16 % Replace leading spaces with 0 (%012.2f)

Constructing the Formatting Operator
The fields that make up a formatting operator in MATLAB are as shown here,
in the order they appear from right to left in the operator. The rightmost field,
the conversion character, is required; the five to the left of that are optional.
Each of these fields is explained in a section below:

1-50

Characters and Strings

• Conversion Character — Specifies the notation of the output.

• Subtype — Further specifies any nonstandard types.

• Precision — Sets the number of digits to display to the right of the decimal
point.

• Field Width — Sets the minimum number of digits to display.

• Flags — Controls the alignment, padding, and inclusion of plus or minus
signs.

• Value Identifiers — Map formatting operators to value input arguments.
Use the identifier field when value arguments are not in a sequential order
in the argument list.

Here is an example of a formatting operator that uses all six fields. (Space
characters are not allowed in the operator. They are shown here only to
improve readability of the figure).

���������	�
����

������������������������������

�����
 ��������������!����

"
��#$�

An alternate syntax, that enables you to supply values for the field width and
precision fields from values in the argument list, is shown below. See the
section “Specifying Field Width and Precision Outside the format String” on
page 1-57 for information on when and how to use this syntax. (Again, space
characters are shown only to improve readability of the figure.)

Each field of the formatting operator is described in the following sections.
These fields are covered as they appear going from right to left in the

1-51

1 Classes (Data Types)

formatting operator, starting with the Conversion Character and ending
with the Identifier field.

Conversion Character. The conversion character specifies the notation of
the output. It consists of a single character and appears last in the format
specifier. It is the only required field of the format specifier other than the
leading % character.

Specifier Description

c Single character
d Decimal notation (signed)
e Exponential notation (using a lowercase e as in 3.1415e+00)
E Exponential notation (using an uppercase E as in 3.1415E+00)
f Fixed-point notation
g The more compact of %e or %f. (Insignificant zeros do not

print.)
G Same as %g, but using an uppercase E
o Octal notation (unsigned)
s String of characters
u Decimal notation (unsigned)
x Hexadecimal notation (using lowercase letters a–f)
X Hexadecimal notation (using uppercase letters A–F)

This example uses conversion characters to display the number 46 in decimal,
fixed-point, exponential, and hexadecimal formats:

A = 46*ones(1,4);

sprintf('%d %f %e %X', A)
ans =

46 46.000000 4.600000e+001 2E

1-52

Characters and Strings

Subtype. The subtype field is a single alphabetic character that immediately
precedes the conversion character. The following nonstandard subtype
specifiers are supported for the conversion characters %o, %u, %x, and %X.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned integer.

Precision. precision in a formatting operator is a nonnegative integer that
tells MATLAB how many digits to the right of the decimal point to use when
formatting the corresponding input value. The precision field consists of a
nonnegative integer that immediately follows a period and extends to the
first alphabetic character after that period. For example, the specifier %7.3f,
has a precision of 3.

Here are some examples of how the precision field affects different types
of notation:

sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))
ans =

157.08 1.6e+002 157.079633 157.08

Precision is not usually used in format specifiers for strings (i.e., %s). If you
do use it on a string and if the value p in the precision field is less than the
number of characters in the string, MATLAB displays only p characters of the
string and truncates the rest.

You can also supply the value for a precision field from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 1-57 for more information on this.

For more information on the use of precision in formatting, see “Setting
Field Width and Precision” on page 1-56.

1-53

1 Classes (Data Types)

Field Width. Field width in a formatting operator is a nonnegative integer
that tells MATLAB the minimum number of digits or characters to use when
formatting the corresponding input value. For example, the specifier %7.3f,
has a width of 7.

Here are some examples of how the width field affects different types of
notation:

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))
ans =

|1.570796e+002| 1.570796e+002|157.079633| 157.079633|

When used on a string, the field width can determine whether MATLAB
pads the string with spaces. If width is less than or equal to the number of
characters in the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')
ans =

Pad left with spaces

You can also supply a value for field width from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 1-57 for more information on this.

For more information on the use of field width in formatting, see “Setting
Field Width and Precision” on page 1-56.

Flags. You can control the alignment of the output using any of these
optional flags:

Character Description Example

A minus sign (-) Left-justifies the
converted argument
in its field

%-5.2d

A plus sign (+) Always prints a sign
character (+ or –)

%+5.2d

Zero (0) Pad with zeros rather
than spaces.

%05.2f

1-54

Characters and Strings

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f', ...
12.3, 12.3)

ans =
right-justify: 12.30
left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:

sprintf('no sign: %12.2f\nsign: %+12.2f', ...
12.3, 12.3)

ans =
no sign: 12.30
sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f', ...
5.2, 5.2)

ans =
space-padded: 5.20
zero-padded: 000000005.20

Note You can specify more than one flag in a formatting operator.

Value Identifiers. By default, MATLAB inserts data values from the
argument list into the string in a sequential order. If you have a need to use
the value arguments in a nonsequential order, you can override the default
by using a numeric identifier in each format specifier. Specify nonsequential
arguments with an integer immediately following the % sign, followed by
a $ sign.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

1-55

1 Classes (Data Types)

Setting Field Width and Precision
This section provides further information on the use of the field width and
precision fields of the formatting operator:

• “Effect on the Output String” on page 1-56

• “Specifying Field Width and Precision Outside the format String” on page
1-57

• “Using Identifiers In the Width and Precision Fields” on page 1-57

Effect on the Output String. The figure below illustrates the way in
which the field width and precision settings affect the output of the string
formatting functions. In this figure, the zero following the % sign in the
formatting operator means to add leading zeros to the output string rather
than space characters:

�	�
%�&'(��)
�� ���	�
%�'

��*�����$���������$
�
���
������������������

�����������$���������$
�
������
��������������

������!����+�!�,�)
$��������+���$�,�� �����������$����������

�����
�������$�������
�������������
����

���-����$������

.��
�������!�������/
���0��������������
���������!����1����

General rules for formatting

• If precision is not specified, it defaults to 6.

• If precision (p) is less than the number of digits in the fractional part of the
input value (f), then only p digits are shown to the right of the decimal
point in the output, and that fractional value is rounded.

• If precision (p) is greater than the number of digits in the fractional part of
the input value (f), then p digits are shown to the right of the decimal point
in the output, and the fractional part is extended to the right with p-f zeros.

1-56

Characters and Strings

• If field width is not specified, it defaults to precision + 1 + the number of
digits in the whole part of the input value.

• If field width (w) is greater than p+1 plus the number of digits in the whole
part of the input value (n), then the whole part of the output value is
extended to the left with w-(n+1+p) space characters or zeros, depending
on whether or not the zero flag is set in the Flags field. The default is to
extend the whole part of the output with space characters.

Specifying Field Width and Precision Outside the format String. To
specify field width or precision using values from a sequential argument list,
use an asterisk (*) in place of the field width or precision field of the
formatting operator.

This example formats and displays three numbers. The formatting operator
for the first, %*f, has an asterisk in the field width location of the formatting
operator, specifying that just the field width, 15, is to be taken from the
argument list. The second operator, %.*f puts the asterisk after the decimal
point meaning, that it is the precision that is to take its value from the
argument list. And the third operator, %*.*f, specifies both field width and
precision in the argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ... % Width for 123.45678 is 15
3, 16.42837, ... % Precision for rand*20 is .3
6, 4, pi) % Width & Precision for pi is 6.4

ans =
123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width
from the argument list and the precision from the format string:

sprintf('%*.2f', 5, 123.45678)
ans =

123.46

Using Identifiers In the Width and Precision Fields. You can also
derive field width and precision values from a nonsequential (i.e., numbered)
argument list. Inside the formatting operator, specify field width and/or
precision with an asterisk followed by an identifier number, followed by
a $ sign.

1-57

1 Classes (Data Types)

This example from the previous section shows how to obtain field width and
precision from a sequential argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ...
3, 16.42837, ...
6, 4, pi)

ans =
123.456780 16.428 3.1416

Here is an example of how to do the same thing using numbered ordering.
Field width for the first output value is 15, precision for the second value is
3, and field width and precision for the third value is 6 and 4, respectively.
If you specify field width or precision with identifiers, then you must specify
the value with an identifier as well:

sprintf('%1$*4$f %2$.*5$f %3$*6$.*7$f', ...
123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =
123.456780 16.428 3.1416

Restrictions for Using Identifiers
If any of the formatting operators in a string include an identifier field, then
all of the operators in that string must do the same; you cannot use both
sequential and nonsequential ordering in the same function call.

Valid Syntax Invalid Syntax

sprintf('%d %d %d %d', ...
1, 2, 3, 4)

ans =
1 2 3 4

sprintf('%d %3$d %d %d', ...
1, 2, 3, 4)

ans =
1

If your command provides more value arguments than there are formatting
operators in the format string, MATLAB reuses the operators. However,
MATLAB allows this only for commands that use sequential ordering.

1-58

Characters and Strings

You cannot reuse formatting operators when making a function call with
numbered ordering of the value arguments.

Valid Syntax Invalid Syntax

sprintf('%d', 1, 2, 3, 4)
ans =

1234

sprintf('%1$d', 1, 2, 3, 4)
ans =

1

Also, do not use identifiers when the value arguments are in the form of a
vector or array:

Valid Syntax Invalid Syntax

v = [1.4 2.7 3.1];

sprintf('%.4f %.4f %.4f', v)
ans =

1.4000 2.7000 3.1000

v = [1.4 2.7 3.1];

sprintf('%3$.4f %1$.4f %2$.4f', v)
ans =

Empty string: 1-by-0

String Comparisons
There are several ways to compare strings and substrings:

• You can compare two strings, or parts of two strings, for equality.

• You can compare individual characters in two strings for equality.

• You can categorize every element within a string, determining whether
each element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality
You can use any of four functions to determine if two input strings are
identical:

• strcmp determines if two strings are identical.

1-59

1 Classes (Data Types)

• strncmp determines if the first n characters of two strings are identical.

• strcmpi and strncmpi are the same as strcmp and strncmp, except that
they ignore case.

Consider the two strings

str1 = 'hello';
str2 = 'help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C = strcmp(str1,str2)
C =

0

Note For C programmers, this is an important difference between the
MATLAB strcmp and C strcmp()functions, where the latter returns 0 if
the two strings are the same.

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C = strncmp(str1, str2, 2)
C =

1

These functions work cell-by-cell on a cell array of strings. Consider the two
cell arrays of strings

A = {'pizza'; 'chips'; 'candy'};
B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp(A,B)
ans =

1
0

1-60

Characters and Strings

0
strncmp(A,B,1)
ans =

1
1
0

Comparing for Equality Using Operators
You can use MATLAB relational operators on character arrays, as long as
the arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine where the
matching characters are in two strings:

A = 'fate';
B = 'cake';

A == B
ans =

0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of
corresponding characters.

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

1 isletter determines if a character is a letter.

2 isspace determines if a character is white space (blank, tab, or new line).

3 isstrprop checks characters in a string to see if they match a category
you specify, such as

• Alphabetic

• Alphanumeric

• Lowercase or uppercase

• Decimal digits

• Hexadecimal digits

1-61

file:///B:/matlab/doc/src/toolbox/matlab/ref/relationaloperators.html

1 Classes (Data Types)

• Control characters

• Graphic characters

• Punctuation characters

• Whitespace characters

For example, create a string named mystring:

mystring = 'Room 401';

isletter examines each character in the string, producing an output vector
of the same length as mystring:

A = isletter(mystring)
A =

1 1 1 1 0 0 0 0

The first four elements in A are logical 1 (true) because the first four
characters of mystring are letters.

Searching and Replacing
MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See Regular Expressions.)

Consider a string named label:

label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation.
Use strrep to change the date from '10/28' to '10/30':

newlabel = strrep(label, '28', '30')
newlabel =

Sample 1, 10/30/95

findstr returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = findstr('amp', label)

1-62

Characters and Strings

position =
2

The position within label where the only occurrence of 'amp' begins is the
second character.

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters are
the set of white-space characters. You can use the strtok function to parse a
sentence into words. For example,

function allWords = words(inputString)
remainder = inputString;
allWords = '';

while (any(remainder))
[chopped,remainder] = strtok(remainder);
allWords = strvcat(allWords, chopped);

end

You can also use the textscan function to perform this task.

The strmatch function looks through the rows of a character array or cell
array of strings to find strings that begin with a given series of characters. It
returns the indices of the rows that begin with these characters:

maxstrings = strvcat('max', 'minimax', 'maximum')
maxstrings =

max
minimax
maximum

strmatch('max', maxstrings)
ans =

1
3

Converting from Numeric to String
The functions listed in this table provide a number of ways to convert numeric
data to character strings.

1-63

1 Classes (Data Types)

Function Description Example

char Convert a positive integer to an equivalent
character. (Truncates any fractional parts.)

[72 105] → 'Hi'

int2str Convert a positive or negative integer to a
character type. (Rounds any fractional parts.)

[72 105]→ '72 105'

num2str Convert a numeric type to a character type of the
specified precision and format.

[72 105] →
'72/105/' (format
set to %1d/)

mat2str Convert a numeric type to a character type of the
specified precision, returning a string MATLAB
can evaluate.

[72 105] → '[72
105]'

dec2hex Convert a positive integer to a character type of
hexadecimal base.

[72 105]→ '48 69'

dec2bin Convert a positive integer to a character type of
binary base.

[72 105]→ '1001000
1101001'

dec2base Convert a positive integer to a character type of
any base from 2 through 36.

[72 105] → '110
151' (base set to 8)

Converting to a Character Equivalent
The char function converts integers to Unicode character codes and returns a
string composed of the equivalent characters:

x = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Converting to a String of Numbers
The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value.
The int2str and num2str functions are often useful for labeling plots. For
example, the following lines use num2str to prepare automated labels for the
x-axis of a plot:

function plotlabel(x, y)

1-64

Characters and Strings

plot(x, y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

Converting to a Specific Radix
Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

Converting from String to Numeric
The functions listed in this table provide a number of ways to convert
character strings to numeric data.

Function Description Example

uintN (e.g., uint8) Convert a character to an integer code that
represents that character.

'Hi' → 72 105

str2num Convert a character type to a numeric type. '72 105'→ [72 105]

str2double Similar to str2num, but offers better
performance and works with cell arrays of
strings.

{'72' '105'} → [72
105]

hex2num Convert a numeric type to a character type
of specified precision, returning a string that
MATLAB can evaluate.

'A' →
'-1.4917e-154'

hex2dec Convert a character type of hexadecimal base
to a positive integer.

'A' → 10

bin2dec Convert a positive integer to a character type
of binary base.

'1010' → 10

base2dec Convert a positive integer to a character type
of any base from 2 through 36.

'12' → 10 (if base ==
8)

1-65

1 Classes (Data Types)

Converting from a Character Equivalent
Character arrays store each character as a 16-bit numeric value. Use one of
the integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name = 'Thomas R. Lee';

name = double(name)
name =

84 104 111 109 97 115 32 82 46 32 76 101 101

name = char(name)
name =

Thomas R. Lee

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str = '37.294e-1';

val = str2num(str)
val =

3.7294

The str2double function converts a cell array of strings to the
double-precision values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)
d =

3.7294
-58.3750
13.7960

whos
Name Size Bytes Class

1-66

Characters and Strings

c 3x1 224 cell
d 3x1 24 double

Converting from a Specific Radix
To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,
but hex2num returns the IEEE double-precision floating-point number it
represents, while hex2dec converts to a decimal integer.

Function Summary
MATLAB provides these functions for working with character arrays:

• Functions to Create Character Arrays on page 1-67

• Functions to Modify Character Arrays on page 1-68

• Functions to Read and Operate on Character Arrays on page 1-68

• Functions to Search or Compare Character Arrays on page 1-68

• Functions to Determine Class or Content on page 1-69

• Functions to Convert Between Numeric and String Classes on page 1-69

• Functions to Work with Cell Arrays of Strings as Sets on page 1-69

Functions to Create Character Arrays

Function Description

’str’ Create the string specified between quotes.
blanks Create a string of blanks.
sprintf Write formatted data to a string.
strcat Concatenate strings.
strvcat Concatenate strings vertically.

1-67

1 Classes (Data Types)

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.
lower Make all letters lowercase.
sort Sort elements in ascending or descending order.
strjust Justify a string.
strrep Replace one string with another.
strtrim Remove leading and trailing white space.
upper Make all letters uppercase.

Functions to Read and Operate on Character Arrays

Function Description

eval Execute a string with MATLAB expression.
sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

findstr Find one string within another.
strcmp Compare strings.
strcmpi Compare strings, ignoring case.
strmatch Find matches for a string.
strncmp Compare the first N characters of strings.
strncmpi Compare the first N characters, ignoring case.
strtok Find a token in a string.

1-68

Characters and Strings

Functions to Determine Class or Content

Function Description

iscellstr Return true for acell array of strings.
ischar Return true for a character array.
isletter Return true for letters of the alphabet.
isstrprop Determine if a string is of the specified category.
isspace Return true for white-space characters.

Functions to Convert Between Numeric and String Classes

Function Description

char Convert to a character or string.
cellstr Convert a character array to a cell array of strings.
double Convert a string to numeric codes.
int2str Convert an integer to a string.
mat2str Convert a matrix to a string you can run eval on.
num2str Convert a number to a string.
str2num Convert a string to a number.
str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.
ismember Detect members of a set.
setdiff Return the set difference of two vectors.
setxor Set the exclusive OR of two vectors.
union Set the union of two vectors.
unique Set the unique elements of a vector.

1-69

1 Classes (Data Types)

Structures

In this section...

“What Is a Structure?” on page 1-70
“Creating a Structure” on page 1-72
“Structure Fields” on page 1-79
“Indexing into a Struct Array” on page 1-82
“Returning Data from a Struct Array” on page 1-84
“Using Structures with Functions” on page 1-88
“Converting Between Struct Array and Cell Array” on page 1-90
“Organizing Data in Structure Arrays” on page 1-92
“Operator Summary” on page 1-97
“Function Summary” on page 1-98

What Is a Structure?
A structure is a MATLAB data type that provides the means to store selected
data together in a single entity. A structure consists mainly of data containers,
called fields, and each of these fields stores an array of some MATLAB data
type. You assign a name to each field as you create the structure. The figure
below shows a structure s that has three fields: a, b, and c.

Each field of a structure contains a separate MATLAB array. This array can
belong to any one MATLAB or user-defined class, and can have any valid

1-70

Structures

array dimensions. A second field of the same structure can belong to an
entirely different class, and can also have different dimensions than the first.
The fields of the structure shown above, for example, contain a 1-by-6 array of
class double, a 1-by-5 array of class char, and a 3-by-3 array of double.

Like all MATLAB data types, the structure is an array. The class of a
structure is called struct, so an array of structures is often referred to as
a struct array. Like other MATLAB arrays, a struct array can have any
dimensions. The struct array shown below has the dimensions 1-by-2 and
is composed of two elements: s(1) and s(2). Each of these elements is a
structure with fields a, b, and c of its own.

Each element of a struct array must contain the same number of fields and
use the same field names as every other element of that struct array. The
arrays of data that are stored in these fields, however, do not have to match;
they can belong to different classes, and they can have different dimensions.
In the struct array shown above, for example, fields b and c of element s(1)
contain arrays of different classes and dimensions. The same holds true for
fields that are named the same but belong to different elements of the struct
array. An example of this is field b in s(1) and field b in s(2).

1-71

1 Classes (Data Types)

Reasons to Use a Structure
Perhaps the most common reason for using a structure (or a cell array) is
the ability to store arrays of mixed classes and sizes. Most MATLAB arrays
must contain the same number of elements which must also be of the same
class. The role of the structure, and cell array, as containers of heterogeneous
data is very important.

A structure also provides the means to store selected data together in a single
entity. This offers you the ability to access and operate on all or parts of the
data collectively. You can apply functions directly to a structure, pass the
structure to and from your M-file functions, display the value of any fields, or
perform most any MATLAB operation on the contents of a structure.

A third reason to use structures is that they give you the ability to apply text
labels to your data, as opposed to using array subscripting.

Comparing Struct Arrays with Cell Arrays
Struct arrays and cell arrays are similar in purpose and, in some ways, also
design. Both provide a means of storing heterogeneous data in containers of
different size and type. Probably the most noticeable difference between the
two is that the containers of a structure are named fields, whereas a cell
array uses numerically indexed cells.

Structures are often used in applications where organization of the data is of
high importance. Cell arrays are often used when working with data that you
intend to process by index in a programming control loop. Cell arrays are also
useful in storing character strings of different lengths.

There are many reasons for choosing either structures, cell arrays, or both for
your work in MATLAB. For more information on cell arrays, see “Cell Arrays”
on page 1-101 in the MATLAB Programming Fundamentals documentation.

Creating a Structure
This section describes how to create struct arrays of different shapes and
sizes, how MATLAB keeps the number of fields the same for all elements, and
how to preallocate memory for larger structures.

1-72

Structures

Creating Structures and Structure Fields
There are two ways of creating a MATLAB structure: by individual
assignments to its fields, or by a single call to the struct function. The
figure below shows a 1-by-1 structure s having three fields: a, b, and c. The
two sets of commands that can create this structure are shown to the left of
and below the figure:

The three statements at the top left are an example of individual assignment
to fields. The syntax s.a used in the first of these statements refers to field
a of a structure s. The structure does not exist yet, so MATLAB creates the
structure and the given field a, and assigns the value 5 to the field. The two
remaining statements add two new fields to the structure and set their values
to 10 and 15, respectively.

The statement at the bottom left uses the struct function to create the
structure and its fields and to assign the respective values to each. See the
reference page for the struct function for the various syntax options you
can use.

Structures with Nonscalar Fields. The next figure creates a three-field
structure to contain nonscalar array values. The statements used to create
this structure are very much like those used in the previous figure.

1-73

1 Classes (Data Types)

Nonscalar Struct Arrays. The next figure creates a struct array s that has
two elements, s(1) and s(2). Each element of the struct array has three
fields: a, b, and c. To create this array by assigning to fields, you need to
specify which element of s you are assigning to. For example, to create a field
b for element 2 of struct array s, assign to s(2).b.

The struct function requires a slightly different syntax when creating fields
in multiple elements of the struct array. Follow each field name argument
with a list of values enclosed in curly braces {}. The enclosed list specifies the
values to be assigned to that field for the successive elements of the struct
array. For example, the first two input arguments shown in the struct
command below are 'a' and {[1 4 7 2 9 3],'Anne'}. This tells MATLAB
to assign the vector [1 4 7 2 9 3] to s(1).a, and the string 'Anne' to
s(2).a:

1-74

Structures

In MATLAB, curly braces {} operator constructs a cell array. One use of cell
arrays is as a convenient way to pass arguments when calling a function. This
is exactly how they are used with the struct function. When you use this
operator to pass multiple field values to the struct function, you are actually
passing these values packaged in a cell array. The struct function, upon
receiving the cell array argument, removes the field values from the cell array
and assigns them to the fields specified in your struct command.

Suppose that, in the example above, you want to create a field a of for struct
element s(1). But instead of s(1).a being a 1-by-6 numeric array, you want
it to be a 1-by-6 cell array. In that case, you would need to enclose the first
argument itself with curly braces:

s = struct('a', {{1 4 7 2 9 3}, 'Anne'}, ...
'b', {'James', pi}, ...
'c', {magic(3), (1:7)'});

Note When calling the struct function, use one set of curly braces {} to pass
multiple field values, and use two sets of curly braces {{}} to create a cell
array in the specified field.

1-75

1 Classes (Data Types)

Nested Structures. The next figure shows an example of one struct array
stored (or nested) within another struct array. The inner struct array, called
myfun, is a collection of two function handles. The commands shown to the
left build the two structures, storing the inner structure in field c of the first
element of the outer structure:

See the reference page for the struct function for more information on using
this function to create structures.

Handling Unassigned Fields
Each element of a nonscalar struct array must have the same set of fields.
Whenever you add a new field to a struct array, MATLAB adds a field of the
same name to all elements of the struct array.

For example, if you enter the following commands:

s.a = 5;
s.b = 10;
s(2).a = 15;

1-76

Structures

MATLAB creates and assigns values to the three specified fields, and also
creates a unspecified field s(2).b, setting its value to the empty array ([]).
This ensures that the fields of s(1) and s(2) are the same in number and
name. This is called scalar expansion:

s(2).b
ans =

[]

MATLAB also automatically keeps field naming and count the same for all
elements when you use the struct function to create a struct array. In this
case, however, field b of elements s(2) and s(3) are set to the value specified
for s(1).b, which is 10:

s = struct('a', {5, 15, 25}, 'b', 10);
[v1 v2 v3] = s.b;

[v1 v2 v3]
ans =

10 10 10

Note The number of field values expressed in curly braces must be the same
for each field name with the exception of fields that are scalar, in which case
you do not need the curly braces.

This example calls struct with three values for field a and two values for
field b, causing the command to generate an error:

s = struct('a', {5, 15, 25}, 'b', {10, 15});
??? Error using ==> struct
Array dimensions of input 4 must match those of input 2 or be scalar.

Preallocating Memory for the Array
MATLAB stores the field names and any overhead information required by
a struct array in contiguous memory. If you increase the number of fields
used by a struct array over time, even if this happens just by increasing the
dimensions of the array, MATLAB uses up more of this contiguous piece of

1-77

1 Classes (Data Types)

memory for field name storage. This can eventually lead to “out of memory”
errors.

If you can roughly estimate the number of fields and the number of struct
array elements at the time you create a struct array, you can preallocate
the necessary space in memory and help to avoid this type of problem. See
the documentation on Data Structures and Memory to help you make this
estimate.

Note Unlike the field name and internal header information of a struct
array, the memory consumed by the data stored in a struct array is not
contiguous. While preallocating memory can help avoid memory problems
when increasing the dimensions of a struct array, it does not protect against
shortages in memory due to the amount of data you store in the array. Even
with preallocated struct (and cell) arrays, you need to take precautions
against using more memory than is available.

How to Preallocate Memory. Methods for preallocating and initializing a
struct array are as follows:

• To allocate memory for an 25-by-50 struct array with fields a, b, and c and
initialize the entire array to [], use either of the following two methods:

S(25,50) = struct('a', [], 'b', [], 'c',[]);
S(25,50).a = []; S(25,50).b = []; S(25,50).c = [];

• To allocate memory for the same struct array, initializing the fields of one
element as specified, and copying that element to all elements of the struct
array S, use either of the following two methods:

S(1:25,1:50) = struct('a', 20, 'b', 30, 'c', 40);
S = repmat(struct('a', 20, 'b', 30, 'c', 40), [25 50]);

After the memory has been allocated, you can begin to construct the array by
assigning data to it.

1-78

Structures

Structure Fields
This section describes how to name the fields you create, how to find out
what fields a structure contains, how to create and assign field names at
run time, and the functions that MATLAB provides to help work with the
fields of a structure.

Guidelines for Naming Structure Fields
A field name is just a character string. MATLAB field names must follow the
same rules as standard MATLAB variables:

1 Structure field names must begin with a letter, and can contain additional
letters, digits, or underscore characters.

2 It is advisable to keep field names to a maximum of N characters, where N
is the number returned by the function namelengthmax. MATLAB accepts
longer names, but only uses the first N characters and ignores the rest.

3 MATLAB distinguishes between uppercase and lowercase characters. The
field name S.income is not the same as the name S.Income.

4 In most cases, you should refrain from using the names of functions or
other active variables as field names.

Listing the Fields of a Structure
To access the contents of a struct array, you first need to find out what the
names of its fields are. The fieldnames function returns a cell array of strings
listing all fields belonging to the structure array. The fields appear in the
order in which they were created.

Here is a structure with four fields:

USPres.name = 'Franklin D. Roosevelt';
USPres.vp(1) = {'John Garner'};
USPres.vp(2) = {'Henry Wallace'};
USPres.vp(3) = {'Harry S Truman'};
USPres.term = [1933, 1945];
USPres.party = 'Democratic';

1-79

1 Classes (Data Types)

The fieldnames function returns the names of each field of USPres in a 4-by-1
cell array of strings:

presFields = fieldnames(USPres)
ans =

'name'
'vp'
'term'
'party'

Arranging Fieldnames Alphabetically
The orderfields function returns a new struct array that is just like the
original, except that the order of the field names is alphabetical. If you assign
the output of orderfields back to the input structure, it effectively modifies
the field ordering of the input structure:

For struct array USPres,

orderfields(USPres)
ans =
1x32 struct array with fields:

name
party
term
vp

returns the field names of the struct array, listed in alphabetical order. If you
want to actually change the order of fields in the struct array, assign the
value returned by orderfields back to USPres:

USPres = orderfields(USPres);

Creating Field Names Dynamically
Another way to give a name to a structure field is to derive the name at the
time MATLAB executes your code. First, establish a variable to represent the
field name of your structure. Then, at run time, MATLAB uses the current
value of this variable as the field name. This is called a dynamic field name.
You can only use dynamic field names when you create your struct array
using individual assignment to fields.

1-80

Structures

The syntax for creating a field name dynamically is

structName.(dynamicExpression) = fieldValue;

The term dynamicExpression is any MATLAB expression that returns a
character or string. For example, in the following statement, the datestr
function returns the string Nov2708 which then becomes a field name in the
price structure. The dot-parentheses .() syntax tells MATLAB that the
string value returned by datestr(now,'mmmddyy') is a field name for the
structure:

price.(datestr(now,'mmmddyy')) = 89.99;

Examining the field names for the price structure shows the Nov2708 field
just added:

fieldnames(price)
ans =

'Nov2708'

price.Nov0708
ans =

89.9900

Functions That Operate on Fields
The following functions are commonly used with the field names of structures.
For more information on these functions, consult the MATLAB Function
Reference documentation:

Function Description Return Value

fieldnames Get all field names of specified
structure.

Cell array of strings listing fields of input
structure in the order in which they were
assigned to the structure.

getfield Get contents of the specified
field.

Current value assigned to specified field.

isfield Determine if input is a structure
field.

true if the field is a structure field.
Otherwise, false.

1-81

1 Classes (Data Types)

Function Description Return Value

orderfields Order fields of a structure array. Input structure with fields ordered
alphabetically.

rmfield Remove structure field. Input structure with specified field
removed.

setfield Set structure field contents,
returning the modified
structure.

Input structure with specified field set to
new value.

To set the value of a structure field, you can either assign it directly, or use
the setfield function. Likewise, you can obtain the value of a field as shown
in the section “Returning Data from a Struct Array” on page 1-84 or by using
the getfield function.

Indexing into a Struct Array
This section describes how to index into the elements of a struct array, and
any arrays that are contained within a struct field.

Basic Struct and Field Indexing
The most general indexing with which to store data into or retrieve data
from a struct array is

structName(sRows, sCols, ...).fieldName(fRows, fCols, ...)

If the structure is scalar, then you can omit the structure indexing as shown
here:

structName.fieldName(fRows, fCols, ...)

Indexing to Inner Levels of the Struct Array
The fields of a structure contain arrays of standard MATLAB data types.
These arrays use the indexing syntax appropriate to the class of the array.
The table below shows examples of statements that use a combination of
struct and cell array indexing:

1-82

Structures

Array Element Syntax to Use

Access an element of an array A, where A is a
field of structure S.

S(3,15).A(5,25)

Access an element of cell array A, where A is a
field of structure S.

S(3,15).A{5,20}

Access an element of array B, where B is a field
of struct array A, and A is a field of struct array
S.

S(3,15).A(5,20).B(50,5)

Access an element of array B, where B is a field
of a structure that resides in cell array A, and A
is a field of structure S.

S(3,15).A{5,20}.B(50,5)

Access an element of cell array B, where B is a
field of structure A, and A is a field of structure
S.

S(3,15).A.B{5,20}

Indexing Tips
Some techniques that could help you in determining how to format struct
array indexing are:

• Use the whos function to tell you exactly what the class and size of the
variable is that you are dealing with. Combining this information and the
standard indexing rules should enable you to find the appropriate syntax to
use to get to the desired piece of data.

• Enter only the right side of the assignment statement, effectively assigning
to the ans variable. By not confining MATLAB to fit its return data into a
possibly incompatible data structure, you allow the software to decide the
type and size of array needed to contain this data. In so doing, the output
illustrates or implies the type of indexing required.

• There are instances in which you can enter a perfectly good indexing
statement that will fail just the same. The reason for this failure is that the
variable you are attempting to assign to already exists in the workspace.
This variable represents an array that is incompatible with your current
assignment statement.

1-83

1 Classes (Data Types)

If you are assigning to a variable that is already in use, try clearing the
variable from the MATLAB workspace, and then reentering your indexing
statement.

• You can index into a nested array in stages rather than all at once.
Consider breaking down this indexing expression:

S(5,3).A(4,7).B(:,4)

into the following:

x = S(5,3).A; % x is a struct array
y = x(4,7).B; % y is also a struct array
z = y(:,4) % z is a standard array

Returning Data from a Struct Array
The following table shows a number of different ways of returning data from a
struct array. The variable s is a 3-by-4 structure with fields a, b, and c. Each
of these fields is a 2-by-5 array of class double:

Values To Be Acquired MATLAB
Statement

Data Structure Returned

The entire struct array s s 3x4 struct array with fields
a, b, and c.

The entire struct array s, as a vector s(:) 12x1 struct array with
fields a, b, and c.

Selected elements of struct s s(2:3,1:3) 2x3 struct array with fields
a, b, and c.

The full array a in selected element of s. s(2,3).a 2x5 array of double.
The full array a in multiple elements of s. s(2:3,3:4).a 4-item comma-separated

list of 2x5 double.
The full array a in all elements of s. s.a 12-item comma-separated

list of 2x5 double.
Selected elements of a in one element of s.
Multiple elements of s are not allowed with
this syntax.

s(3,4).a(2,3:5) 1x3 array of double.

1-84

Structures

The first three of these indexing expressions provide no access to individual
elements of the field arrays. You could use these expressions to copy,
rearrange, or delete parts of the structure.

Assigning Struct Values to a Comma-Separated List
Accessing a single value from a field in a struct array is no different from
accessing one of the elements of any other MATLAB data type. You specify
the appropriate subscripts for the struct and field arrays and MATLAB
returns the value stored at that location in the array.

Accessing multiple elements, however, can be quite different. Multiple
elements of a struct array cannot be assigned to a single variable because they
do not necessarily belong to the same class. Instead, MATLAB assigns values
from a struct array to a series of separate variables called a comma-separated
list.

Create a struct S, with one field, A:

S = struct('A', {5, 'Anne', @myfun, 1:5});

Examining field A for all elements of S returns a comma-separated list:

S.A
ans =

5
ans =

Anne
ans =

@myfun
ans =

1 2 3 4 5

The potential problem with this type of output is that MATLAB overwrites
the ans variable for each value returned. If you only want to display these
values, then this command should suit your purpose. The next section shows
how to assign to variables that you can reuse.

1-85

1 Classes (Data Types)

Assigning Struct Values to Separate Variables
If you were to assign multiple elements of a struct array to just one variable,
MATLAB uses that variable to return the first value, but is unable to return
all values of the array:

x = s.a
x =

5

If you know how many values there are in the struct array elements you are
trying to access, then you can provide that many outputs in the command, as
shown here:

[v1 v2 v3 v4] = s.a

v1 =
5

v2 =
Anne

v3 =
@myfun

v4 =
1 2 3 4 5

As in the previous example, this is a comma-separated list. Each return
variable is of the class and size of the struct array element assigned to it:

whos v1
Name Size Bytes Class Attributes

v1 1x1 8 double

whos v2
Name Size Bytes Class Attributes

v2 1x4 8 char

1-86

Structures

Assigning Struct Values to a Cell Array
You can assign the values of the struct array to a cell array using the
following syntax:

[x{1:4}] = s.a
x =

[5] 'Anne' @myfun [1x6 double]

whos x
Name Size Bytes Class Attributes

x 1x4 320 cell

Preallocating the cell array to a certain size and shape gives you control over
how MATLAB returns the output:

x1 = cell(4,1); % Make x1 a 4-by-1 array
[x1{:}] = s.a
x1 =

[5]
'Anne'
@myfun
[1x6 double]

x2 = cell(2,2); % Make x2 a 2-by-2 array
[x2{:}] = s.a
x2 =

[5] @myfun
'Anne' [1x6 double]

x3 = cell(1,3); % Make x3 a 3-element array
[x3{:}] = s.a
x3 =

[5] 'Anne' @myfun

Another way to do this is to use the following statements:

[x1{1:4,1}] = s.a
[x2{1:2,1:2}] = s.a
[x3{1:3}] = s.a

1-87

1 Classes (Data Types)

Using Structures with Functions
This section describes how to apply a function to data contained within a
structure field using the structfun function, and also how to pass arguments
to and from a function using structures.

Applying a Function to the Fields of a Structure
Use the structfun function to execute a function on each field of a scalar
struct array. This example executes an anonymous function on a structure
having fields that name the days of a week. The anonymous function,
@(x)x(1:3), shortens each string to its first three characters. The function
reference page for structfun explains the use of the UniformOutput option:

days.f1 = 'Sunday'; days.f2 = 'Monday';
days.f3 = 'Tuesday'; days.f4 = 'Wednesday';
days.f5 = 'Thursday'; days.f6 = 'Friday';
days.f7 = 'Saturday';

shortNames = structfun(@(x)x(1:3), days, 'UniformOutput', false)
shortNames =

f1: 'Sun'
f2: 'Mon'
f3: 'Tue'
f4: 'Wed'
f5: 'Thu'
f6: 'Fri'
f7: 'Sat'

See the reference page for structfun for additional help on using this
function.

Passing Arguments in a Structure
A simple and easily maintainable way to pass arguments to or from a function
is to package them in a structure, and then pass the entire structure to the
function. This example passes information pertaining to four United States
presidents to the function showPresInfo using only one input argument. You
can also use struct arrays to return data from a function call.

Store data on the presidents in a 1-by-30 struct array:

1-88

Structures

USPres(27).name = 'William Howard Taft'; % 27th US President
USPres(27).term = [1909, 1913]; % Term
USPres(27).vp = 'James S. Sherman'; % Vice President

USPres(28).name = 'Woodrow Wilson'; % 28th
USPres(28).term = [1913, 1921];
USPres(28).vp = 'Thomas R. Marshall';

USPres(29).name = 'Warren G. Harding'; % 29th
USPres(29).term = [1921, 1923];
USPres(29).vp = 'Calvin Coolidge';

USPres(30).name = 'Calvin Coolidge'; % 30th
USPres(30).term = [1923, 1929];
USPres(30).vp = 'Charles Dawes';

Write a short program to display the information passed in:

function showPresInfo(number, info)
info(number-26)

Call this program, passing rows 27 through 30 of the struct array:

showPresInfo(29, USPres(27:30))
ans =

name: 'Warren G. Harding'
term: [1921 1923]

vp: 'Calvin Coolidge'

Passing Selected Fields in a Structure
You can also pass selected fields of a structure in a function call. This
example passes the vp field of the USPres struct array in the form of a
comma-separated list. In this case, the function being called, showVPInfo,
receives these strings as four separate input arguments:

The value passed to this function is a list of four separate items:

USPres(27:30).vp
ans =

James S. Sherman

1-89

1 Classes (Data Types)

ans =
Thomas R. Marshall

ans =
Calvin Coolidge

ans =
Charles Dawes

Write a short program that displays the name of a selected Vice President.
Use the varargin function to accept and unpack the four separate input
arguments generated by the USPres(27:30).vp input:

function showVPInfo(number, varargin)
str = ['The Vice President who served with ', ...

'the %dth US President was %s\n'];
fprintf(str, number, varargin{number-26})

Run the program a couple of times to verify that the names of more than one
Vice Presidents were passed:

showVPInfo(28, USPres(27:30).vp)
The Vice President who served with the 28th US President was Thomas R. Ma

showVPInfo(30, USPres(27:30).vp)
The Vice President who served with the 30th US President was Charles Dawe

Converting Between Struct Array and Cell Array
The struct2cell function converts a structure array to a cell array. The
statement

c = struct2cell(s)

converts an m-by-n structure s that has p fields into a p-by-m-by-n cell array c:

The cell2struct function converts a cell array to a struct array. The
statement

s = cell2struct(c,f,d)

converts a cell array c into a struct array s having the fields named in f and
based on the d axis of the input cell array.

1-90

Structures

Conversion Example
This example converts a 1-by-2 struct array USPres_s1 with four fields to a
4-by-1-by-2 cell array USPres_c1, and then back to a structure USPres3_s2
that is equal to the original.

Create the original structure:

USPres_s1(1).name = 'Franklin D. Roosevelt';
USPres_s1(1).party = 'Democratic';
USPres_s1(1).term = {1933, 1945};
USPres_s1(1).vp = ...

{'John Garner';'Henry Wallace';'Harry S Truman'};

USPres_s1(2).name = 'Harry S Truman';
USPres_s1(2).party = 'Democratic';
USPres_s1(2).term = {1945, 1953};
USPres_s1(2).vp = 'Alben Barkley';
whos USPres_s1

Name Size Bytes Class Attributes

USPres_s1 1x2 1400 struct

Convert the struct array to a cell array:

USPres_c1 = struct2cell(USPres_s1);
whos USPres_c1

Name Size Bytes Class Attributes

USPres_c1 4x1x2 1144 cell

Convert back to a struct array and compare it with the original:

USPres_s2 = cell2struct(USPres_c1, ...
{'name','party','term','vp'}, 1);

whos USPres_s2
Name Size Bytes Class Attributes

USPres_s2 1x2 1400 struct

isequal(USPres_s1, USPres_s2)
ans =

1-91

1 Classes (Data Types)

1

Organizing Data in Structure Arrays
The key to organizing structure arrays is to decide how you want to access
subsets of the information. This, in turn, determines how you build the array
that holds the structures, and how you break up the structure fields.

For example, consider a 128-by-128 RGB image stored in three separate
arrays; RED, GREEN, and BLUE.

1-92

Structures

There are at least two ways you can organize such data into a structure array:
plane organization and element-by-element organization.

Plane Organization
In the plane organization, shown to the left in the figure above, each field of
the structure is an entire plane of the image. You can create this structure
using

A.r = RED;
A.g = GREEN;
A.b = BLUE;

This approach allows you to easily extract entire image planes for display,
filtering, or other tasks that work on the entire image at once. To access
the entire red plane, for example, use

redPlane = A.r;

1-93

1 Classes (Data Types)

Plane organization has the additional advantage of being extensible to
multiple images in this case. If you have a number of images, you can store
them as A(2), A(3), and so on, each containing an entire image.

The disadvantage of plane organization is evident when you need to access
subsets of the planes. To access a subimage, for example, you need to access
each field separately:

redSub = A.r(2:12,13:30);
greenSub = A.g(2:12,13:30);
blueSub = A.b(2:12,13:30);

Element-by-Element Organization
The element-by-element organization, shown to the right in the previous
figure, has the advantage of allowing easy access to subsets of data. However,
it has the disadvantage of being very memory-intensive. To set up the data in
this organization, use

for m = 1:size(RED,1)
for n = 1:size(RED,2)

B(m,n).r = RED(m,n);
B(m,n).g = GREEN(m,n);
B(m,n).b = BLUE(m,n);

end
end

With element-by-element organization, you can access a subset of data with a
single statement:

Bsub = B(1:10,1:10);

To access an entire plane of the image using the element-by-element method,
however, requires a loop:

redPlane = zeros(128, 128);
for k = 1:(128 * 128)

redPlane(k) = B(k).r;
end

1-94

Structures

Element-by-element organization is not the best structure array choice for
most image processing applications. However, it can be the best for other
applications wherein you routinely need to access corresponding subsets of
structure fields. The example in the following section demonstrates this type
of application.

Example — A Simple Database
Consider organizing a simple database.

Each of the possible organizations has advantages depending on how you
want to access the data. Typically, your data does not dictate the organization
scheme you choose. Rather, you must consider how you want to access and
operate on the data.

Advantages of Using Plane Organization. Plane organization makes it
easier to operate on all field values at once. If, for example, you want to find
the average of all the values in the amount field,

1-95

1 Classes (Data Types)

• Using plane organization, you could use the following statement:

avg = mean(A.amount);

• Using element-by-element organization, you need to remember to
enclose the amount expression in brackets:

avg = mean([B.amount]);

Advantages of Using Element-By-Element Organization.
Element-by-element organization makes it easier to access all the information
related to a single client. Consider an M-file, client.m, which displays the
name and address of a given client on screen.

Using plane organization, the client function appears as:

function client(name,address)
disp(name)
disp(address)

Call this function as follows:

client(A.name(2,:), A.address(2,:))

Using element-by-element organization, both the function and function
call require less code. The client function is:

function client(B)
disp(B)

To call the function, use:

client(B(2))

Element-by-element organization also makes it easier to expand the string
array fields. If you do not know the maximum string length ahead of time
for plane organization, you might need to frequently recreate the name or
address field to accommodate longer strings.

1-96

Structures

Operator Summary
This section summarizes the following types of operators that work with
structures:

• “Operators That Construct the Array” on page 1-97

• “Operators That Concatenate Structures” on page 1-97

• “Operators Used for Array Indexing ” on page 1-97

Operators That Construct the Array

Syntax Description

S = struct('f1', x,
'f2', y, 'f3', z)

Builds a 1-by-1 struct array S with fields f1, f2, and f3, which
can contain data of unlike types. Field f1 contains the value of x,
field f2 contains the value of y, etc.

S = struct('f1', {x,
y, z})

Builds a 1-by-3 struct array S where each element of S has one
field f1, which can contain data of unlike types. S(1).f1 contains
the value of x, S(2).f1 contains the value of y, etc.

Operators That Concatenate Structures

Syntax Description

S3 = [S1 S2] Concatenates struct arrays S1 and S2 into a two-element struct
array.

S3 = [S1.F; S2.F] Concatenates the fields of struct arrays S1 and S2 into an array
of the same data type. S3 is not necessarily a struct.

Operators Used for Array Indexing

Syntax Description

X = S(s) Returns the elements of struct array S specified by subscripts s.
X = S(s).F Returns all elements of field F for elements of S specified by s.

1-97

1 Classes (Data Types)

Syntax Description

X = S(s).F(f) Returns selected elements of field F for structure elements specified
by subscript s.

X = S1(s1).S2(s2).F Returns the contents of a nested struct array. Multiple elements of
S1 are not allowed with this syntax.

X = S(s).F{c} Returns the specified elements of a cell array that reside in a field of
struct array S.

Function Summary
This section summarizes the following types of functions that work with
structures:

• “Functions Related to Constructing the Array” on page 1-98

• “Functions Related to the Type of the Array” on page 1-99

• “Functions Related to Struct Fields” on page 1-99

• “Functions Related to Applying Functions to a Struct Array” on page 1-99

Functions Related to Constructing the Array

Function Description

cat Concatenate arrays along specified dimension.
horzcat Concatenate arrays horizontally.
length Length of vector.
ndims Number of array dimensions.
numel Number of elements in array or subscripted array expression.
repmat Replicate and tile array.
reshape Reshape array.
size Size of array.

1-98

Structures

Function Description

struct Create structure array.
vertcat Concatenate arrays vertically.

Functions Related to the Type of the Array

Function Description

cell2struct Convert cell array to structure array.
class Create object or return class of object.
isstruct Determine whether input is structure array.
struct2cell Convert structure to cell array.
whos List variables in workspace.

Functions Related to Struct Fields

Function Description

fieldnames Get all field names of specified structure.
getfield Get contents of the specified field.
isempty Determine whether array is empty.
isfield Determine if input is a structure field.
orderfields Order fields of a structure array.
rmfield Remove structure field.
setfield Set structure field contents, returning the modified structure.
Dynamic Fieldnames Generate field name strings at run time.

Functions Related to Applying Functions to a Struct Array

Function Description

structfun Apply function to each field of scalar structure.

1-99

1 Classes (Data Types)

Function Description

varargin Variable length input argument list.
varargout Variable length output argument list.

1-100

Cell Arrays

Cell Arrays

In this section...

“What Is a Cell Array?” on page 1-101
“Cell Array Operations” on page 1-103
“Creating a Cell Array” on page 1-103
“Concatenating Cell Arrays” on page 1-108
“Indexing into a Cell Array” on page 1-109
“Assigning Values to a Cell Array” on page 1-113
“Returning Data from a Cell Array” on page 1-114
“Using Cell Arrays with Functions” on page 1-118
“Converting Between Cell Array and Struct Array” on page 1-120
“Operator Summary” on page 1-122
“Function Summary” on page 1-123

What Is a Cell Array?
A cell array is a collection of containers called cells in which you can store
different types of data. The figure shown below represents a 2-by-3 cell array.
The cells in row one hold an array of unsigned integers, an array of strings,
and an array of complex numbers. Row two holds three other types of arrays,
the last being a second cell array nested in the outer one:

1-101

1 Classes (Data Types)

Each cell of a cell array contains some type of MATLAB array. The data in
this array can belong to any one MATLAB or user-defined class, and can have
any valid array dimensions; this includes 1-by-1 (a scalar array), or having one
or more dimension equal to zero (an empty array). A second cell of the same
array can belong to an entirely different class, and can also have different
dimensions than the first. The capability to store arrays of mixed classes and
sizes is the most significant feature of a cell array. Another common use of cell
arrays is to store character strings that are of unequal length. A cell array
that is used for this purpose is called a cell array of strings.

Like all MATLAB arrays, cell arrays must be rectangular in shape. That is,
the length of all rows must be the same, the length of all columns the same,
and so on for every dimension of the array.

In many respects, cell arrays are quite similar to struct arrays. See
“Comparing Struct Arrays with Cell Arrays” on page 1-72 for help in deciding
which of these two classes best suits the needs of your applications.

1-102

Cell Arrays

Cell Array Operations
This table shows the operators used in creating, concatenating, and indexing
into the cells of a cell array.

Operation Syntax Description

Creating C = {A B D
E}

Builds a cell array C that can contain data of unlike types in A,
B, D, and E.

C3 = {C1 C2} Concatenates cell arrays C1 and C2 into a two-element cell array
C3 such that C3{1} = C1 and C3{2} = C2.

Concatenating

C3 = [C1 C2] Concatenates the contents of cell arrays C1 and C2, assuming that
the dimensions of these arrays are compatible.

X = C(s) Returns the cells of array C that are specified by subscripts s.
X = C{s} Returns the contents of the cells of C that are specified by

subscripts s.

Indexing

X = C{s}(t) References one or more elements of an array that resides within
a cell. Subscript s selects the cell, and subscript t selects the
array element(s).

For more information on these operations, see “Creating a Cell Array” on page
1-103, “Concatenating Cell Arrays” on page 1-108, and “Indexing into a Cell
Array” on page 1-109, respectively.

Creating a Cell Array

• “Nesting One Cell Array in Another” on page 1-104

• “Creating Cell Arrays One Cell At a Time” on page 1-105

• “Alternative Assignment Syntax” on page 1-107

• “Preallocating Memory for the Array” on page 1-107

Creating cell arrays in MATLAB is similar to creating arrays of other
MATLAB classes like double, char, and so on. The main difference is that,
when creating a cell array, you enclose the array contents or indices with curly
braces { } instead of square brackets []. The curly braces are cell array

1-103

1 Classes (Data Types)

constructors, just as square brackets are numeric array constructors. Use
commas or spaces to separate elements and semicolons to terminate each row.

For example, to create a 2-by-2 cell array A, type

A = {[1 4 3; 0 5 8; 7 2 9], 'Anne Smith'; 3+7i, -pi:pi/4:pi};

This results in the array shown below.

Note The curly braces operator creates two-dimensional matrices only,
(including 0-by-0, 1-by-1, and 1-by-n matrices). To create cell arrays of more
than two dimensions, see “Creating Multidimensional Arrays”.

Nesting One Cell Array in Another
To nest one cell array within another, enclose both inner and outer cell
arrays with the curly braces { }. The example shown here nests a cell array
of vital signs inside a cell array of a person’s medical record. (Defining the
columns with a header is not usually required, and is just used here to make
the example simpler):

header = {'Name', 'Age', 'Pulse/Temp/BP'};
records(1,:) = {'Kelly', 49, {58, 98.3, [103, 72]}};

header, records
header =

'Name' 'Age' 'Pulse/Temp/BP'
records =

'Kelly' [49] {1x3 cell}

1-104

Cell Arrays

It is often easier to build a nested cell array in steps. The example below
creates the inner cell array, vitalsigns, first. The second statement then
uses the vitalsigns array in creating the outer cell array, records:

vitalsigns = {60, 98.4, [105, 75]};

records(1,:) = {'Kelly', 49, vitalsigns}
record =

'Name' 'Age' 'Pulse/Temp/BP'
'Kelly' [49] {1x3 cell}

Verify the new values in the records cell array::

fprintf('pulse: %d temp: %3.1f bp: %d/%d\n', ...
records{3}{:})

pulse: 60 temp: 98.4 bp: 105/75

Creating Cell Arrays One Cell At a Time
You also can create a cell array one cell at a time by using multiple assignment
statements. MATLAB expands the size of the cell array with each assignment
statement:

A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};
A(1,2) = {'Anne Smith'};
A(2,1) = {3+7i};
A(2,2) = {-pi:pi/4:pi};

If you assign data to a cell that is outside the dimensions of the current array,
MATLAB automatically expands the array to include the subscripts you
specify. It fills any intervening cells with empty matrices. For example, the
assignment below turns the 2-by-2 cell array A into a 3-by-3 cell array:

A(3,3) = {5};

1-105

1 Classes (Data Types)

3–by-3 Cell Array

Note If you already have a numeric array of a given name, don’t try to
create a cell array of the same name by assignment without first clearing the
numeric array. If you do not clear the numeric array, MATLAB assumes that
you are trying to mix cell and numeric syntaxes, and generates an error.
Similarly, MATLAB does not clear a cell array when you make a single
assignment to it. If any of the examples in this section give unexpected
results, clear the cell array from the workspace and try again.

Handling Unassigned Cells. To keep all dimensions of a cell array even,
MATLAB automatically fills in any unassigned cells as you build the cell
array. For example, if you have a cell array that consists of a row of three
elements, and you add one new cell to a second row, MATLAB adds two cells
to the new row to keep all rows at the same length. The values of these two
cells are set to the empty array []. This is called scalar expansion.

MATLAB handles other array types in a similar manner, except that it sets
unassigned elements to zero instead of the empty array. This example adds a
single element to a 1-by-3 array of type double, and then does the same to
a cell array:

A = [2 4 6]; A(2,1) = 8
A =

2 4 6

1-106

Cell Arrays

8 0 0

C = {2 4 6}; C(2,1) = {8}
C =

[2] [4] [6]
[8] [] []

Alternative Assignment Syntax
When assigning values to a cell array, either of the syntaxes shown below is
valid. You can use the braces on the right side of the equation, enclosing the
value being assigned, as shown here:

A(1,1) = {[1 4 3; 0 5 8; 7 2 9]};
A(1,2) = {'Anne Smith'};

You can also use them on the left side, enclosing the array subscripts:

A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';

Preallocating Memory for the Array
MATLAB stores internal information for a cell array in a contiguous segment
of memory called a header. If you increase the number of cells in a cell array
over time, the size of the header also grows, thus using more of this segment
in memory. This can eventually lead to “out of memory” errors.

If you can roughly estimate the dimensions of a cell array at the time you
create it, you can preallocate the necessary space in memory and help to
avoid this type of problem. See the documentation on Data Structures and
Memory to help you make this estimate.

1-107

1 Classes (Data Types)

Note Unlike the internal header information of a cell array, the memory
consumed by the data stored in a cell array is not contiguous. While
preallocating memory can help avoid memory problems when increasing the
dimensions of a cell array, it does not protect against shortages in memory
due to the amount of data you store in the array. Even with preallocated cell
(and struct) arrays, you need to take precautions against using more memory
than is available.

How to Preallocate Memory. To allocate memory for a 25-by-50 cell array
and initialize the entire array to [], use either of the following two methods:

C = cell(25,50);
C{25,50} = [];

After the memory has been allocated, you can begin to construct the array by
assigning data to it.

Concatenating Cell Arrays
There are two ways that you can create a new cell array from existing cell
arrays:

• Concatenate entire cell arrays to individual cells of the new array. For
example, join three cell arrays together to build a new cell array having
three elements, each containing a cell array. This method uses the curly
brace { } operator.

• Concatenate the contents of the cells into a new array. For example, join
cell arrays of size m-by-n1, m-by-n2, and m-by-n3 together to yield a new
cell array that is m-by-(n1+n2+n3) in size. This method uses the square
bracket [] operator.

Here is an example. First, create three 3-row cell arrays of different widths:

C1 = {'Jan' 'Feb'; '10' '17'; uint16(2004) uint16(2001)};
C2 = {'Mar' 'Apr' 'May'; '31' '2' '10'; ...

uint16(2006) uint16(2005) uint16(1994)};
C3 = {'Jun'; '23'; uint16(2002)};

1-108

Cell Arrays

This creates arrays C1, C2, and C3:

C1 C2 C3
'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun'
'10' '17' '31' '2' '10' '23'
[2004] [2001] [2006] [2005] [1994] [2002]

Use the curly brace operator to concatenate entire cell arrays, thus building
a 1-by-3 cell array from the three initial arrays. Each cell of this new array
holds its own cell array:

C4 = {C1 C2 C3}
C4 =

{3x2 cell} {3x3 cell} {3x1 cell}

Now use the square bracket operator on the same combination of cell arrays.
This time MATLAB concatenates the contents of the cells together and
produces a 3-by-6 cell array:

C5 = [C1 C2 C3]
C5 =

'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun'
'10' '17' '31' '2' '10' '23'
[2004] [2001] [2006] [2005] [1994] [2002]

Note The notation {} denotes the empty cell array, just as [] denotes the
empty matrix for numeric arrays. You can use the empty cell array in any
cell array assignments.

Indexing into a Cell Array
When working with cell arrays, you have a choice of selecting entire cells of
an array to work with, or the contents of those cells. The first method is cell
indexing, the second is content indexing:

• Cell indexing enables you to work with whole cells of an array. You can
access single or multiple cells within the array, but you cannot select
anything less than the complete cell. If you want to manipulate the cells of
an array without regard to the contents of those cells, use cell indexing.
This type of indexing is denoted by the parentheses operator ().

1-109

1 Classes (Data Types)

Use cell indexing to assign any set of cells to another variable, creating a
new cell array.

Creating a New Cell Array from an Existing One

• Content indexing gives you access to the contents of a cell. You can work
with individual elements of an array within a cell, but you can only do so
for one cell at a time. This indexing uses the curly brace operator { }.

Note The examples in this section focus on two-dimensional cell arrays. For
examples of higher-dimension cell arrays, see “Multidimensional Arrays”.

This example shows how to use cell and content indexing. Start out by
creating the following 3-by-3 cell array. The third element of each row is a
nested cell array:

header = {'Name', 'Age', 'Pulse/Temp/BP'};
records(1,:) = {'Kelly', 49, {58, 98.3, [103, 72]}};
records(2,:) = {'Mark', 25, {60, 98.6, [105, 75]}};
records(3,:) = {'Susan', 32, {71, 99.1, [110, 78]}};

Display the contents of the cell array. Defining the columns with a header is
not usually required, and is just used here to make the example simpler:

header =
'Name' 'Age' 'Pulse/Temp/BP'

records =
'Kelly' [49] {1x3 cell}
'Mark' [25] {1x3 cell}
'Susan' [32] {1x3 cell}

1-110

Cell Arrays

Use content indexing (curly braces) to change one of the names. Content
indexing gives you access to what is contained within the cells of the array:

records{3,1}='Susanne'
records =

'Kelly' [49] {1x3 cell}
'Mark' [25] {1x3 cell}
'Susanne' [32] {1x3 cell}

Use cell indexing (parentheses) to delete an entire row. (You delete part of a
cell array by assigning the empty array [] to it.) Cell indexing is appropriate
here because you do not need access to the contents of the row:

records(1,:) = []
records =

'Mark' [25] {1x3 cell}
'Susanne' [32] {1x3 cell}

Indexing Into Inner Levels of the Cell Array
The cells of a cell array contain arrays of standard MATLAB data types.
These arrays use the indexing syntax appropriate to the class of the array.
The table below shows examples of statements that use a combination of
cell and struct array indexing:

Action Required Indexing

Access an element of an array in a cell of cell
array C.

C{3,15}(5,25)

Access an element of array A, where A is a
field of a structure that resides in cell array C.

C{3,15}.A(5,20)

Access an element of an array that resides
in a nested cell array.

C{3,15}{5,20}(50,5)

Access an element of array B, where B is
a field of structure A, and A is a field of a
structure that resides in cell array C.

C{3,15}.A(5,20).B(50,5)

Access an element of cell array B, where B is a
field of a structure that resides in cell array C.

C{3,15}.B{5,20}

1-111

1 Classes (Data Types)

Start this example by creating the records cell array taken from the example
in the previous section:

records(1,:) = {'Kelly', 49, {58, 98.3, [103, 72]}};
records(2,:) = {'Mark', 25, {60, 98.6, [105, 75]}};
records(3,:) = {'Susan', 32, {71, 99.1, [110, 78]}};

Display information from cells in the nested cell array. This requires two
adjacent expressions of content indexing, {2,3}{3}:

fprintf('Name: %s Systolic: %d Diastolic: %d\n', ...
records{2,1}, records{2,3}{3})

Name: Mark Systolic: 105 Diastolic: 75

Indexing Tips
You can index into a nested array in stages rather than all at once. Consider
breaking down this indexing expression

C{5,3}{4,7}(:,4)

into the following:

x = C{5,3}; % x is a cell array
y = x{4,7}; % y is also a cell array
z = y(:,4) % z is a standard array

See the section on “Indexing Tips” on page 1-83 in the documentation on
“Structures” for indexing tips that apply to both the cell and struct classes.

Using Map Objects in Cell Array Indexing
If you want both the numeric indexing of cell arrays and the named containers
of structures, you can combine the two to some extent by implementing cell
array indexing with a MATLAB Map object (see “Map Containers” on page
1-144). The Map object provides a translation from a name string to a numeric
array index. This implementation has the advantage of using less memory
than a struct or cell array, but has the disadvantage of being slower.

The example shown here demonstrates the use of a Map object in locating
information in a cell array. Note that the names given to the keys of a Map

1-112

Cell Arrays

object do not have to adhere to the rules for variable names. In this example,
each of the key names contain a space character. This is not allowed in
variable names:

redSoxStats(57:60,1:4) = { ...
%
% AtBat Runs Hits HR
%

653, 118, 213, 17; ... % Pedroia
554, 98, 155, 9; ... % Ellsbury
538, 91, 168, 29; ... % Youkilis
423, 37, 93, 13}; ... % Varitek

m1 = containers.Map({'Dustin Pedroia','Jacoby Ellsbury', ...
'Kevin Youkilis', 'Jason Varitek'}, {57,58,59,60});

m2 = containers.Map({'AtBat','Runs','Hits', 'HR'}, ...
{1,2,3,4});

player = 'Dustin Pedroia';
fprintf(...

'\n %s had %d At Bats and %d hits this season.\n', ...
player, redSoxStats{m1(player), m2('AtBat')}, ...
redSoxStats{m1(player), m2('Hits')})

Dustin Pedroia had 653 At Bats and 213 hits in the 2008 season.

Assigning Values to a Cell Array
Use the curly brace { } operator on the right side of the statement to assign
values to a cell array:

To store four values in a 2-by-2 cell array, use

C = {magic(5), 'Hello'; uint8(100), [1:3:19]}
C =

[5x5 double] 'Hello'
[100] [1x7 double]

The following commands place the values into different cells of cell array C:

1-113

1 Classes (Data Types)

clear C
C(3,1:4) = {magic(5), 'Hello', uint8(100), [1:3:19]}
C =

[] [] [] []
[] [] [] []

[5x5 double] 'Hello' [100] [1x7 double]

clear C
C(2:3,5:6) = {magic(5), 'Hello'; uint8(100), [1:3:19]}
C =

[] [] [] [] [] []
[] [] [] [] [5x5 double] [100]
[] [] [] [] 'Hello' [1x7 double]

The deal function offers an alternative method of writing to the cell array.
These two statements produce the same result as the statements shown above
that use the curly braces { } operator:

[C{3,1:4}] = deal(magic(5), 'Hello', uint8(100), [1:3:19]);
[C{2:3,5:6}] = deal(magic(5), 'Hello', uint8(100), [1:3:19]);

Returning Data from a Cell Array
This section describes the syntax to use to have MATLAB return data from a
cell array, how to assign data from a cell array to a comma-separated list or
separate output variables, and also how to plot the contents of a cell array.

Obtaining Values from the Array
The following table shows a number of different ways of returning data from
a cell array. The variable c is a 3x4 cell array in which each cell contains
a 2x5 array of class double.

Values to be acquired MATLAB
Statement

Data Structure Returned

Top level of cell array c c 3x4 cell array.

Top level of cell array c, as a vector c(:) 12x1 cell array.
Selected cells in cell array c c(2:3,1:3) 2x3 cell array.

1-114

Cell Arrays

Values to be acquired MATLAB
Statement

Data Structure Returned

Full contents of one cell in cell array c. c{2,3} 2x5 array of double.
Full contents of selected cells in cell array c. c{2:3,3:4} 4-item comma-separated

list of 2x5 double.
Full contents of all cells in cell array c. c{:} 12-item comma-separated

list of 2x5 double.
Selected elements of one cell in cell array c.
You cannot use multiple elements of c with
this syntax.

c{3,4}(2,3:5) 1x3 array of double.

The first three of these indexing expressions provide no access to individual
elements of the cells. You could use these expressions to copy, rearrange, or
delete parts of the cell array.

Assigning Cell Values to a Comma-Separated List
Accessing a single value from one cell of a cell array is no different from
accessing one of the elements of any other MATLAB data type. Accessing
multiple elements, however, can be quite different. Multiple elements of a cell
array cannot be assigned to a single variable because they do not necessarily
belong to the same class. Instead, MATLAB assigns values from a cell array
to a series of separate variables called a comma-separated list. Here is an
example of such a list:

First, create a 3-by-3 cell array called records:

records(1,:) = {'Kelly', 49, {58, 98.3, [103, 72]}};
records(2,:) = {'Mark', 25, {60, 98.6, [105, 75]}};
records(3,:) = {'Susan', 32, {71, 99.1, [110, 78]}};

Displaying one column of the cell array causes MATLAB to return three
separate values, each, in succession, assigned to the ans variable:

records{:,2}
ans =

49
ans =

1-115

1 Classes (Data Types)

25
ans =

32

The potential problem with this type of output is that MATLAB overwrittes
the ans variable for each value returned. If you only want to display these
values, then this command should suit your purpose. The next section shows
how to assign to variables that you can reuse.

Assigning Cell Values to Separate Variables
If you were to assign multiple elements of a cell array to just one variable,
MATLAB uses that variable to return the first value, but is unable to return
all values of the array:

x = records{:,2}
x =

49

If you know how many values there are in the cell array elements you are
trying to access, then you can provide that many outputs in the command, as
shown here:

[v1 v2 v3] = records{:,1}
v1 =

Kelly
v2 =

Mark
v3 =

Susan

As in the previous example, this is a comma-separated list. As you can see
here, each return variable adopts the class and size of the cell array element
assigned to it:

whos v1
Name Size Bytes Class Attributes

v1 1x5 10 char

whos v2

1-116

Cell Arrays

Name Size Bytes Class Attributes

v2 1x4 8 char

Plotting the Cell Array
For a high-level graphical display of cell architecture, use the cellplot
function. Consider a 2-by-2 cell array containing two text strings, a matrix,
and a vector:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

The command cellplot(c) produces this figure.

1-117

1 Classes (Data Types)

Using Cell Arrays with Functions
This section describes how to apply a function to data contained within a
cell array using the cellfun function, and also how to pass arguments to
and from a function using cell arrays.

Applying a Function to the Cells of a Cell Array
Use the cellfun function to run a function on each field of a scalar cell array.
This example runs an anonymous function on a cell array containing the days
of a week. The anonymous function, @(x)x(1:3), shortens each string to
its first three characters. The function reference page for cellfun explains
the use of the UniformOutput option:

days{1} = 'Sunday'; days{2} = 'Monday';
days{3} = 'Tuesday'; days{4} = 'Wednesday';
days{5} = 'Thursday'; days{6} = 'Friday';
days{7} = 'Saturday';

shortNames = cellfun(@(x)x(1:3), days, 'UniformOutput', false)
shortNames =

'Sun' 'Mon' 'Tue' 'Wed' 'Thu' 'Fri' 'Sat'

See the reference page for cellfun for additional help on using this function.

Passing Variable Numbers of Arguments
You can call a function with variable numbers of input or output arguments
by using the terms varargin and varargout in the respective input and
output argument lists for that function. The function being called provides
access to these arguments using cell arrays named varargin and varargout.
See Passing Variable Numbers of Arguments in the documentation on
“Functions and Scripts”.

Passing Arguments in a Cell Array
A simple and easily maintainable way to pass arguments to or from a function
is to package them in a cell array, and then pass the entire cell array to the
function. This example passes information pertaining to four United States
presidents to the function showPresInfo:

USPres = cell(30,3); % Allocate memory for the array.

1-118

Cell Arrays

USPres{27,1} = 'William Howard Taft'; % 27th US President
USPres{27,2} = [1909, 1913]; % Term
USPres{27,3} = 'James S. Sherman'; % Vice President

USPres{28,1} = 'Woodrow Wilson'; % 28th
USPres{28,2} = [1913, 1921];
USPres{28,3} = 'Thomas R. Marshall';

USPres{29,1} = 'Warren G. Harding'; % 29th
USPres{29,2} = [1921, 1923];
USPres{29,3} = 'Calvin Coolidge';

USPres{30,1} = 'Calvin Coolidge'; % 30th
USPres{30,2} = [1923, 1929];
USPres{30,3} = 'Charles Dawes';

Write a short program to display the information passed in:

function showPresInfo(number, info)
info(number-26, :)'

Call this program, passing rows 27 through 30 of the cell array:

showPresInfo(29, USPres(27:30, :))
ans =

'Warren G. Harding'
[1x2 double]
'Calvin Coolidge'

Passing Selected Cells of a Cell Array
You can also pass selected cells of a cell array in a function call. This example
passes the names of the four Vice Presidents in the form of a comma-separated
list. In this case, the function being called, showVPInfo, receives these strings
as four separate input arguments:

The value passed to this function is a list of four separate items:

USPres(27:30).vp
ans =

1-119

1 Classes (Data Types)

James S. Sherman
ans =

Thomas R. Marshall
ans =

Calvin Coolidge
ans =

Charles Dawes

Write a short program that displays the name of a selected Vice President.
Use the varargin function to accept and unpack the four separate input
arguments generated by the USPres{27:30,3} input:

function showVPInfo(number, varargin)
str = ['The Vice President who served with ', ...

'the %dth US President was %s\n'];
fprintf(str, number, varargin{number-26})

Run the program a couple of times to verify that the names of more than one
Vice Presidents were passed:

showVPInfo(28, USPres{27:30,3})
The Vice President who served with the 28th US President was Thomas R. Ma

showVPInfo(30, USPres{27:30,3})
The Vice President who served with the 30th US President was Charles Dawe

Converting Between Cell Array and Struct Array
The cell2struct function converts a cell array to a struct array. The
statement

s = cell2struct(c,f,d)

converts a cell array c into a struct array s having the fields named in f and
based on the d axis of the input cell array.

The struct2cell function converts a structure array to a cell array. The
statement

c = struct2cell(s)

converts an m-by-n structure s that has p fields into a p-by-m-by-n cell array c:

1-120

Cell Arrays

Conversion Example
This example converts a 4-by-1-by-2 cell array USPres_c1 to a 1-by-2 struct
array USPres_s1 with four fields, and then back to a cell array USPres_c2
that is equal to the original.

Create the original cell array:

USPres_c1{1,1,1} = 'Franklin D. Roosevelt';
USPres_c1{2,1,1} = 'Democratic';
USPres_c1{3,1,1} = [1933, 1945];
USPres_c1{4,1,1} = ...

{'John Garner';'Henry Wallace';'Harry S Truman'};

USPres_c1{1,1,2} = 'Harry S Truman';
USPres_c1{2,1,2} = 'Democratic';
USPres_c1{3,1,2} = [1945, 1953];
USPres_c1{4,1,2} = {'Alben Barkley'};
whos USPres_c1

Name Size Bytes Class Attributes

USPres_c1 4x1x2 964 cell

Convert the cell array to a struct array:

USPres_s1 = cell2struct(USPres_c1, ...
{'name','party','term','vp'}, 1);

whos USPres_s1
Name Size Bytes Class Attributes

USPres_s1 1x2 1220 struct

Convert back to a cell array and compare it with the original:

USPres_c2 = struct2cell(USPres_s1);
whos USPres_c2

Name Size Bytes Class Attributes

USPres_c2 4x1x2 964 cell

isequal(USPres_c1, USPres_c2)
ans =

1-121

1 Classes (Data Types)

1

Operator Summary
This section summarizes the following types of operators that work with cell
arrays:

• “Operators That Construct the Cell Array” on page 1-122

• “Operators That Concatenate Cells and Cell Content” on page 1-122

• “Operators Used for Cell Array Indexing ” on page 1-122

Operators That Construct the Cell Array

Syntax Description

C = {A B D E} Builds a cell array C that can contain data of unlike
types in A, B, D, and E.

Operators That Concatenate Cells and Cell Content

Syntax Description

C3 = {C1 C2} Concatenates cell arrays C1 and C2 into a two-element
cell array C3, such that C3{1} = C1 and C3{2} = C2.

C3 = [C1 C2] Concatenates the contents of cell arrays C1 and C2
into a new cell array with length(C3) == length(C1)
+ length(C2).

Operators Used for Cell Array Indexing

Syntax Description

X = C(s) Returns the cells of array C that are specified by
subscripts s.

X = C{s} Returns the contents of the cells of C that are specified
by subscripts s.

1-122

Cell Arrays

Syntax Description

X = C{s}(v) References one or more elements of an array that
resides within a cell. Subscript s selects the single
cell, and subscript v selects the array element(s).

X = C{s1}{s2} Returns the contents of a nested cell array. Subscripts
for the outer array C are s1. These subscripts can only
refer to one cell of the outer array. Subscripts for the
inner cell array are s2.

X = C{s1}{s2}(v) Returns one or more elements of an array that reside
in a nested cell array.

X = C{s}(t).f(v) Returns one or more elements of an array that reside
in a struct field, where the struct resides in a cell of
cell array C. Subscripts are s for the cell array, t for
the struct array, and v for the lowest-level array.

Function Summary
This section summarizes the following types functions that work with cell
arrays:

• “Functions Related to Constructing the Array” on page 1-123

• “Functions Related to the Type of the Array” on page 1-124

• “Functions Related to Obtaining Cell Array Contents” on page 1-124

• “Functions Related to Applying Functions to a Cell Array” on page 1-124

• “Functions Used with Cell Array Conversion” on page 1-125

Functions Related to Constructing the Array

Function Description

cat Concatenate arrays along specified dimension.

cell Create cell array.
horzcat Concatenate arrays horizontally.

1-123

1 Classes (Data Types)

Function Description

length Length of array.
ndims Number of array dimensions.
numel Number of elements in array or subscripted array expression.
repmat Replicate and tile array.
reshape Reshape array.
size Size of array.
vertcat Concatenate arrays vertically.

Functions Related to the Type of the Array

Function Description

cell2struct Convert cell array to structure array.
class Create object or return class of object.
iscell Determine whether input is cell array.
struct2cell Convert structure to cell array.
whos List variables in workspace.

Functions Related to Obtaining Cell Array Contents

Function Description

celldisp Display cell array contents.
cellplot Display a graphical depiction of a cell array.
deal Copy input to separate outputs.

Functions Related to Applying Functions to a Cell Array

Function Description

cellfun Apply function to each field of scalar cell array.

1-124

Cell Arrays

Function Description

varargin Variable length input argument list.
varargout Variable length output argument list.

Functions Used with Cell Array Conversion

Function Description

cell2struct Convert cell array into struct array.
struct2cell Convert struct array into cell array.
mat2cell Divide matrix into cell array of matrices
cell2mat Convert cell array of matrices to single matrix
num2cell Convert numeric array to cell array

1-125

1 Classes (Data Types)

Function Handles

In this section...

“Overview” on page 1-126
“Creating a Function Handle” on page 1-126
“Calling a Function Using Its Handle” on page 1-129
“Handling Values Returned From a Call” on page 1-130
“Applications of Function Handles” on page 1-131
“Saving and Loading Function Handles” on page 1-136
“Advanced Operations on Function Handles” on page 1-137
“Functions That Operate on Function Handles” on page 1-143

Overview
A function handle is a callable association to a MATLAB function. It contains
an association to that function that enables you to invoke the function
regardless of where you call it from. This means that, even if you are outside
the normal scope of a function, you can still call it if you use its handle.

With function handles, you can:

• Pass a function to another function

• Capture data values for later use by a function

• Call functions outside of their normal scope

• Save the handle in a MAT-file to be used in a later MATLAB session

See “Applications of Function Handles” on page 1-131 for an explanation
of each of these applications.

Creating a Function Handle

• “Maximum Length of a Function Name” on page 1-127

• “Associating a Handle with a Function” on page 1-128

1-126

Function Handles

• “Handles to Anonymous Functions” on page 1-128

• “Function Handle Arrays” on page 1-129

You construct a handle for a specific function by preceding the function name
with an @ sign. The syntax is:

h = @functionname

where h is the variable to which the returned function handle is assigned.

Use only the function name, with no path information, after the @ sign. If
there is more than one function with this name, MATLAB associates with
the handle the one function source it would dispatch to if you were actually
calling the function.

Create a handle h for a function plot that is on your MATLAB path:

h = @plot;

Once you create a handle for a function, you can invoke the function by means
of the handle instead of using the function name. Because the handle contains
the absolute path to its function, you can invoke the function from any
location that MATLAB is able to reach, as long as the M-file for the function
still exists at this location. This means that functions in one M-file can call
functions that are not on the MATLAB path, subfunctions in a separate
M-file, or even functions that are private to another directory, and thus not
normally accessible to that caller.

Maximum Length of a Function Name
Function names used in handles are unique up to N characters, where N is
the number returned by the function namelengthmax. If the function name
exceeds that length, MATLAB truncates the latter part of the name.

For function handles created for Sun™ Java™ constructors, the length of any
segment of the package name or class name must not exceed namelengthmax
characters. (The term segment refers to any portion of the name that lies
before, between, or after a dot. For example, java.lang.String has three
segments). The overall length of the string specifying the package and class
has no limit.

1-127

1 Classes (Data Types)

Associating a Handle with a Function
At the time you create a function handle, MATLAB must decide exactly which
function it is to associate the handle to. In doing so, MATLAB uses the same
rules used to determine which M-file to invoke when you make a function call.
To make this determination, MATLAB considers the following:

• Scope — The function named must be on the MATLAB path at the time
the handle is constructed.

• Precedence — MATLAB selects which function(s) to associate the
handle with, according to the function precedence rules described under
Determining Which Function Gets Called.

• Overloading — If additional M-files on the path overload the function
for any of the standard MATLAB classes, such as double or char, then
MATLAB associates the handle with these M-files, as well.

M-files that overload a function for classes other than the standard
MATLAB classes are not associated with the function handle at the time it
is constructed. Function handles do operate on these types of overloaded
functions, but MATLAB determines which implementation to call at the time
of evaluation in this case.

Handles to Anonymous Functions
Function handles also serve as the means of invoking anonymous functions.
An anonymous function is a one-line expression-based MATLAB function that
does not require an M-file.

For example, the statement

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input
argument x. The @ operator makes sqr a function handle, giving you a means
of calling the function:

sqr(20)
ans =

400

1-128

Function Handles

See “Anonymous Functions” on page 4-3 for more information on anonymous
functions.

Function Handle Arrays
To create an array of function handles, you must use a cell array:

trigFun = {@sin, @cos, @tan};

For example, to plot the cosine of the range -pi to pi at 0.01 intervals, use

plot(trigFun{2}(-pi:0.01:pi))

Calling a Function Using Its Handle
To execute a function associated with a function handle, use the syntax shown
here. In this example, h is a variable that has a function handle as its value:

h(arg1, arg2, ..., argn)

If the function being called takes no input arguments, then use empty
parentheses after the handle name to call the function:

h()

If you use only the variable name, not followed by parentheses, MATLAB just
identifies the name of the associated function and does not invoke the function:

h = @computer; % Construct the handle h.

h
h = % h alone just identifies the handle.

@computer

h() % h with parentheses invokes the function.
ans =

PCWIN

1-129

1 Classes (Data Types)

Example of Passing a Function Handle
The following example creates a handle for a function supplied by MATLAB
called humps and assigns it to the variable h. (The humps function returns a
strong maxima near x = 0.3 and x = 0.9).

h = @humps;

After constructing the handle, you can pass it in the argument list of a call
to some other function, as shown here. This example passes the function
handle h that was just created as the first argument in a call to fminbnd. This
function then minimizes over the interval [0.3, 1].

x = fminbnd(h, 0.3, 1)
x =

0.6370

Using a function handle enables you to pass different functions for fminbnd to
use in determining its final result.

Handling Values Returned From a Call
When you invoke a function using a function handle, you can capture any
or all values returned from the call in the same way you would if you were
calling the function directly. Just list the output variables to the left of the
equals (=) sign. When assigning to multiple outputs, enclose the output
variables within square brackets:

[out1 out2 ...] = h(arg1, arg2, arg3, ...)

The example below returns multiple values from a call to an anonymous
function. Create anonymous function f that locates the nonzero elements of
an array, and returns the row, column, and value of each element in variables
row, col, and val:

f = @(X)find(X);

Call the function on matrix m using the function handle f. Because the
function uses the MATLAB find function which returns up to three outputs,
you can specify from 0 to 3 outputs in the call:

m = [3 2 0; -5 0 7; 0 0 1]

1-130

Function Handles

m =
3 2 0

-5 0 7
0 0 1

[row col val] = f(m);

val
val =

3
-5
2
7
1

Applications of Function Handles
The following sections discuss the advantages of using function handles:

• “Pass a Function to Another Function” on page 1-131

• “Capture Data Values For Later Use By a Function” on page 1-133

• “Call Functions Outside of Their Normal Scope” on page 1-135

• “Save the Handle in a MAT-File for Use in a Later MATLAB Session” on
page 1-136

Pass a Function to Another Function
The ability to pass variables to a function enables you to run the function on
different values. In the same way, you can pass function handles as input
arguments to a function, thus allowing the called function to change the
operations it runs on the input data.

Example 1 — Run quad on Varying Functions. Run the quadrature
function on varying input functions:

a = 0; b = 5;

quad(@log, a, b)
ans =

3.0472

1-131

1 Classes (Data Types)

quad(@sin, a, b)
ans =

0.7163

quad(@humps, a, b)
ans =

12.3566

Example 2 — Run quad on Anonymous Functions. Run quad on a
MATLAB built-in function or an anonymous function:

n = quad(@log, 0, 3);

n = quad(@(x)x.^2, 0, 3);

Change the parameters of the function you pass to quad with a simple
modification of the anonymous function that is associated with the function
handle input:

a = 3.7;
z = quad(@(x)x.^a, 0, 3);

Example 3 — Compare quad Results on Different Functions. Compare
the integral of the cosine function over the interval [a, b]:

a = 0; b = 10;
int1 = quad(@cos,a,b)

int1 =
-0.5440

with the integral over the same interval of the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values x
and y:

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = quad(@(x)ppval(pp,x), a, b)

1-132

Function Handles

int2 =
-0.5485

Capture Data Values For Later Use By a Function
You can do more with a function handle than just create an association to a
certain function. By using anonymous functions, you can also capture certain
variables and their values from the function workspace and store them in
the handle. These data values are stored in the handle at the time of its
construction, and are contained within the handle for as long as it exists.
Whenever you then invoke the function by means of its handle, MATLAB
supplies the function with all variable inputs specified in the argument list
of the function call, and also any constant inputs that were stored in the
function handle at the time of its construction.

Storing some or all input data in a function handle enables you to reliably
use the same set of data with that function regardless of where or when you
invoke the handle. You can also interrupt your use of a function and resume
it with the same data at a later time simply by saving the function handle to
a MAT-file.

Example 1 — Constructing a Function Handle to Hold Data. Compare
the following two ways of implementing a simple plotting function called
draw_plot. The first case creates the function as one that you would call
by name and that accepts seven inputs specifying coordinate and property
information:

function draw_plot(x, y, lnSpec, lnWidth, mkEdge, mkFace, mkSize)

plot(x, y, lnSpec, ...

'LineWidth', lnWidth, ...

'MarkerEdgeColor', mkEdge, ...

'MarkerFaceColor', mkFace, ...

'MarkerSize', mkSize)

The second case implements draw_plot as an anonymous function to be
called by a function handle, h. The draw_plot function has only two inputs
now; the remaining five are specified only on a call to the handle constructor
function, get_plot_handle:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, ...
mkFace, mkSize)

1-133

1 Classes (Data Types)

h = @draw_plot;
function draw_plot(x, y)

plot(x, y, lnSpec, ...
'LineWidth', lnWidth, ...
'MarkerEdgeColor', mkEdge, ...
'MarkerFaceColor', mkFace, ...
'MarkerSize', mkSize)

end
end

Because these input values are required by the draw_plot function but are not
made available in its argument list, MATLAB supplies them by storing them
in the function handle for draw_plot at the time it is constructed. Construct
the function handle h, also supplying the values to be stored in handle:

h = get_plot_handle('--rs', 2, 'k', 'g', 10);

Now call the function, specifying only the x and y inputs:

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
h(x, y) % Draw the plot

The later section on “Examining a Function Handle” on page 1-137 continues
this example by showing how you can examine the contents of the function
and workspace contents of this function handle.

Example 2 — Varying Data Values Stored in a Function Handle.
Values stored within a handle to a nested function do not have to remain
constant. The following function constructs and returns a function handle h to
the anonymous function addOne. In addition to associating the handle with
addOne, MATLAB also stores the initial value of x in the function handle:

function h = counter
x = 0;
h = @addOne;

function y = addOne;
x = x + 1;
y = x;
end

end

1-134

Function Handles

The addOne function that is associated with handle h increments variable x
each time you call it. This modifies the value of the variable stored in the
function handle:

h = counter;
h()

1
h()

2

Example 3 — You Cannot Vary Data in a Handle to an Anonymous
Function. Unlike the example above, values stored within a handle to an
anonymous function do remain constant. Construct a handle to an anonymous
function that just returns the value of x, and initialize x to 300. The value of x
within the function handle remains constant regardless of how you modify x
external to the handle:

x = 300;
h = @()x;

x = 50;
h()
ans =

300

clear x
h()
ans =

300

Call Functions Outside of Their Normal Scope
By design, only functions within an M-file are permitted to access subfunctions
defined within that file. However, if, in this same M-file, you were to
construct a function handle for one of the internal subfunctions, and then
pass that handle to a variable that exists outside of the M-file, access to that
subfunction would be essentially unlimited. By capturing the access to the
subfunction in a function handle, and then making that handle available to
functions external to the M-file (or to the command line), the example extends

1-135

1 Classes (Data Types)

that scope. An example of this is shown in the preceding section, “Capture
Data Values For Later Use By a Function” on page 1-133.

Private functions also have specific access rules that limit their availability
with the MATLAB environment. But, as with subfunctions, MATLAB allows
you to construct a handle for a private function. Therefore, you can call it by
means of that handle from any location or even from the MATLAB command
line, should it be necessary.

Save the Handle in a MAT-File for Use in a Later MATLAB
Session
If you have one or more function handles that you would like to reuse in a later
MATLAB session, you can store them in a MAT-file using the save function
and then use load later on to restore them to your MATLAB workspace.

Saving and Loading Function Handles
You can save and load function handles in a MAT-file using the MATLAB save
and load functions. If you load a function handle that you saved in an earlier
MATLAB session, the following conditions could cause unexpected behavior:

• Any of the M-files that define the function have been moved, and thus no
longer exist on the path stored in the handle.

• You load the function handle into an environment different from that in
which it was saved. For example, the source for the function either doesn’t
exist or is located in a different directory than on the system on which
the handle was saved.

In both of these cases, the function handle is now invalid because it is no
longer associated with any existing function code. Although the handle is
invalid, MATLAB still performs the load successfully and without displaying
a warning. Attempting to invoke the handle, however, results in an error.

Invalid or Obsolete Function Handles
If you create a handle to a function that is not on the MATLAB path, or if you
load a handle to a function that is no longer on the path, MATLAB catches
the error only when the handle is invoked. You can assign an invalid handle

1-136

Function Handles

and use it in such operations as func2str. MATLAB catches and reports an
error only when you attempt to use it in a runtime operation.

Advanced Operations on Function Handles
Advanced operations include:

• “Examining a Function Handle” on page 1-137

• “Converting to and from a String” on page 1-138

• “Comparing Function Handles” on page 1-139

Examining a Function Handle
Use the functions function to examine the contents of a function handle.

Caution MATLAB provides the functions function for querying and
debugging purposes only. Because its behavior may change in subsequent
releases, you should not rely upon it for programming purposes.

The following example is a continuation of the example shown in “Example 1
— Constructing a Function Handle to Hold Data” on page 1-133. The example
constructs a function handle that contains both a function association, and
data required by that function to execute. The function shown here constructs
the function handle, h:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, ...
mkFace, mkSize)

h = @draw_plot;
function draw_plot(x, y)

plot(x, y, lnSpec, ...
'LineWidth', lnWidth, ...
'MarkerEdgeColor', mkEdge, ...
'MarkerFaceColor', mkFace, ...
'MarkerSize', mkSize)

end
end

Use functions to examine the contents of the returned handle:

1-137

1 Classes (Data Types)

f = functions(h)
f =

function: 'get_plot_handle/draw_plot'
type: 'nested'
file: 'D:\matlab\work\get_plot_handle.m'

workspace: {[1x1 struct]}

The call to functions returns a structure with four fields:

• function — Name of the function or subfunction to which the handle
is associated. (Function names that follow a slash character (/) are
implemented in the program code as subfunctions.)

• type— Type of function (e.g., simple, nested, anonymous)

• file— Filename and path to the M-file. (For built-in functions, this is the
string 'MATLAB built-in function')

• workspace— Variables in the function workspace at the time the handle
was constructed, along with their values

Examine the workspace variables that you saved in the function handle:

f.workspace{:}
ans =

h: @get_plot_handle/draw_plot
lnSpec: '--rs'

lnWidth: 2
mrkrEdge: 'k'
mrkrFace: 'g'
mrkrSize: 10

Converting to and from a String
Two functions, str2func and func2str enable you to convert between a
string containing a function name and a function handle that is associated
with that function name.

Converting a String to a Function Handle. Another means of creating a
function handle is to convert a string that holds a function name to a handle
for the named function. You can do this using the str2func function:

1-138

Function Handles

handle = str2func('functionname');

The example below takes the name of a function as the first argument. It
compares part of the name to see if this is a polynomial function, converts the
function string to a function handle if it is not, and then calls the function by
means of its handle:

function run_function(funcname, arg1, arg2)
if strncmp(funcname, 'poly', 4)

disp 'You cannot run polynomial functions on this data.'
return

else
h = str2func(funcname);
h(arg1, arg2);

end

Note Nested functions are not accessible to str2func. To construct a
function handle for a nested function, you must use the function handle
constructor, @.

Converting a Function Handle to a String. You can also convert a
function handle back into a string using the func2str function:

functionname = func2str(handle);

This example converts the function handle h to a string containing the function
name, and then uses the function name in a message displayed to the user:

function call_h(h, arg1, arg2)
sprintf('Calling function %s ...\n', func2str(h))
h(arg1, arg2)

Comparing Function Handles
This section describes how MATLAB determines whether or not separate
function handles are equal to each other:

• “Comparing Handles Constructed from a Named Function” on page 1-140

1-139

1 Classes (Data Types)

• “Comparing Handles to Anonymous Functions” on page 1-140

• “Comparing Handles to Nested Functions” on page 1-141

• “Comparing Handles Saved to a MAT-File” on page 1-142

Comparing Handles Constructed from a Named Function. MATLAB
considers function handles that you construct from the same named function
(e.g., handle = @sin) to be equal. The isequal function returns a value of
true when comparing these types of handles:

func1 = @sin;
func2 = @sin;
isequal(func1, func2)
ans =

1

If you save these handles to a MAT-file, and then load them back into the
workspace later on, they are still equal.

Comparing Handles to Anonymous Functions. Unlike handles to named
functions, any two function handles that represent the same anonymous
function (i.e., handles to anonymous functions that contain the same text) are
not equal. This is because MATLAB cannot guarantee that the frozen values
of non-argument variables (such as A, below) are the same.

A = 5;
h1 = @(x)A * x.^2;
h2 = @(x)A * x.^2;

isequal(h1, h2)
ans =

0

Note In general, MATLAB may underestimate the equality of function
handles. That is, a test for equality may return false even when the functions
happen to behave the same. But in cases where MATLAB does indicate
equality, the functions are guaranteed to behave in an identical manner.

1-140

Function Handles

If you make a copy of an anonymous function handle, the copy and the
original are equal:

h1 = @(x)A * x.^2; h2 = h1;
isequal(h1, h2)
ans =

1

Comparing Handles to Nested Functions. MATLAB considers function
handles to the same nested function to be equal only if your code constructs
these handles on the same call to the function containing the nested functions.
Given this function that constructs two handles to the same nested function:

function [h1, h2] = test_eq(a, b, c)
h1 = @findZ;
h2 = @findZ;

function z = findZ
z = a.^3 + b.^2 + c';
end

end

function handles constructed from the same nested function and on the same
call to the parent function are considered equal:

[h1 h2] = test_eq(4, 19, -7);

isequal(h1, h2),
ans =

1

while those constructed from different calls are not considered equal:

[q1 q2] = test_eq(3, -1, 2);

isequal(h1, q1)
ans =

0

1-141

1 Classes (Data Types)

Comparing Handles Saved to a MAT-File. If you save equivalent
anonymous or nested function handles to separate MAT-files, and then load
them back into the MATLAB workspace, they are no longer equal. This is
because saving the function handle loses track of the original circumstances
under which the function handle was created. Reloading it results in a
function handle that compares as being unequal to the original function
handle.

Create two equivalent anonymous function handles:

h1 = @(x) sin(x);
h2 = h1;

isequal(h1, h2)
ans =

1

Save each to a different MAT-file:

save fname1 h1;
save fname2 h2;

Clear the MATLAB workspace, and then load the function handles back into
the workspace:

clear all
load fname1
load fname2

The function handles are no longer considered equal:

isequal(h1, h2)
ans =

0

Note, however, that equal anonymous and nested function handles that you
save to the same MAT-file are equal when loaded back into MATLAB.

1-142

Function Handles

Functions That Operate on Function Handles
MATLAB provides the following functions for working with function handles.
See the reference pages for these functions for more information.

Function Description

functions Return information describing a function handle.
func2str Construct a function name string from a function

handle.
str2func Construct a function handle from a function name

string.
save Save a function handle from the current workspace to

a MAT-file.
load Load a function handle from a MAT-file into the current

workspace.
isa Determine if a variable contains a function handle.
isequal Determine if two function handles are handles to the

same function.

1-143

1 Classes (Data Types)

Map Containers

In this section...

“Overview of the Map Data Structure” on page 1-144
“Description of the Map Class” on page 1-145
“Creating a Map Object” on page 1-147
“Examining the Contents of the Map” on page 1-150
“Reading and Writing Using a Key Index” on page 1-151
“Modifying Keys and Values in the Map” on page 1-154
“Mapping to Different Value Types” on page 1-157

Overview of the Map Data Structure
A Map is a type of fast key lookup data structure that offers a flexible means
of indexing into its individual elements. Unlike most array data structures
in the MATLAB software that only allow access to the elements by means of
integer indices, indices for a Map can be nearly any scalar numeric value
or a character string.

Indices into the elements of a Map are called keys. These keys, along with the
data values associated with them, are stored within the Map. Each entry of a
Map contains exactly one unique key and its corresponding value. Indexing
into the Map of rainfall statistics shown below with a string representing the
month of August yields the value internally associated with that month, 37.3.

1-144

Map Containers

 327.2
 368.2
 197.6
 178.4
 100.0
 69.9
 32.3
 37.3
 19.0
 37.0
 73.2
 110.9
1551.0

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual

KEYS VALUES

Aug 37.3

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically,
a key may be any of the following types:

• 1-by-N character array

• Scalar real double or single

• Signed or unsigned scalar integer

The values stored in a Map can be of any type. This includes arrays of
numeric values, structures, cells, strings, objects, or other Maps.

Note A Map is most memory efficient when the data stored in it is a scalar
number or a character array.

Description of the Map Class
A Map is actually an object, or instance, of a MATLAB class called Map. It is
also a handle object and, as such, it behaves like any other MATLAB handle
object. This section gives a brief overview of the Map class. For more details,

1-145

1 Classes (Data Types)

see the function reference pages for the Map constructor or for any method
of the class.

Properties of the Map Class
All objects of the Map class have three properties. You cannot write directly to
any of these properties; you can change them only by means of the methods
of the Map class.

Property Description Default

Count Unsigned 64-bit integer that represents the total
number of key/value pairs contained in the Map
object.

0

KeyType String that indicates the type of all keys contained
in the Map object. KeyType can be any of the
following: double, single, char, and signed or
unsigned 32-bit or 64-bit integer. If you attempt to
add keys of an unsupported type, int8 for example,
MATLAB makes them double.

char

ValueType String that indicates the type of values contained
in the Map object. If the values in a Map are all
scalar numbers of the same type, ValueType is set
to that type. If the values are all character arrays,
ValueType is 'char'. Otherwise, ValueType is
'any'.

any

To examine one of these properties, follow the name of the Map object with
a dot and then the property name. For example, to see what type of keys
are used in Map mapObj, use

mapObj.KeyType

A Map is a handle object. As such, if you make a copy of the object, MATLAB
does not create a new Map; it creates a new handle for the existing Map that
you specify. If you alter the Map’s contents in reference to this new handle,
MATLAB applies the changes you make to the original Map as well. You can,
however, delete the new handle without affecting the original Map.

1-146

Map Containers

Methods of the Map Class
The Map class implements the following methods. Their use is explained in the
later sections of this documentation and also in the function reference pages.

Method Description

isKey Check if Map contains specified key
keys Names of all keys in Map
length Length of Map
remove Remove key and its value from Map
size Dimensions of Map
values Values contained in Map

Creating a Map Object
A Map is an object of the Map class. It is defined within a MATLAB package
called containers. As with any class, you use its constructor function to
create any new instances of it. You must include the package name when
calling the constructor:

newMap = containers.Map(optional_keys_and_values)

Constructing an Empty Map Object
When you call the Map constructor with no input arguments, MATLAB
constructs an empty Map object. When you do not end the command with a
semicolon, MATLAB displays the following information about the object you
have constructed:

newMap = containers.Map()
newMap =

containers.Map handle
package: containers
properties:

Count: 0
KeyType: 'char'

ValueType: 'any'
lists of Methods, Events, Superclasses

1-147

1 Classes (Data Types)

The properties of an empty Map object are set to their default values:

• Count = 0

• KeyType = 'char'

• ValueType = 'any'

Once you construct the empty Map object, you can use the keys and values
methods to populate it. For a summary of MATLAB functions you can use
with a Map object, see “Methods of the Map Class” on page 1-147

Constructing An Initialized Map Object
Most of the time, you will want to initialize the Map with at least some keys
and values at the time you construct it. You can enter one or more sets of
keys and values using the syntax shown here. The brace operators ({}) are
not required if you enter only one key/value pair:

mapObj = containers.Map({key1, key2, ...}, {val1, val2, ...});

For those keys and values that are character strings, be sure that you
specify them enclosed within single quotation marks. For example, when
constructing a Map that has character string keys, use

mapObj = containers.Map(...
{'keystr1', 'keystr2', ...}, {val1, val2, ...});

As an example of constructing an initialized Map object, create a new Map for
the following key/value pairs taken from the monthly rainfall map shown
earlier in this section.

1-148

Map Containers

 327.2
 368.2
 197.6
 178.4
 100.0
 69.9
 32.3
 37.3
 19.0
 37.0
 73.2
 110.9
1551.0

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual

KEYS VALUES

k = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', ...
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Annual'};

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9, ...
32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, v)
rainfallMap =

containers.Map handle
Package: containers

Properties:
Count: 13

KeyType: 'char'
ValueType: 'double'

Methods, Events, Superclasses

The Count property is now set to the number of key/value pairs in the Map,
13, the KeyType is char, and the ValueType is double.

1-149

1 Classes (Data Types)

Combining Map Objects
You can combine Map objects vertically using concatenation. However, the
result is not a vector of Maps, but rather a single Map object containing all
key/value pairs of the contributing Maps. Horizontal vectors of Maps are not
allowed. See “Building a Map with Concatenation” on page 1-153, below.

Examining the Contents of the Map
Each entry in a Map consists of two parts: a unique key and its corresponding
value. To find all the keys in a Map, use the keys method. To find all of the
values, use the values method.

Create a new Map called tickets that maps airline ticket numbers to the
holders of those tickets. Construct the Map with four key/value pairs:

ticketMap = containers.Map(...
{'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
{'James Enright', 'Carl Haynes', 'Sarah Latham', ...
'Bradley Reid'});

Use the keys method to display all keys in the Map. MATLAB lists keys of
type char in alphabetical order, and keys of any numeric type in numerical
order:

keys(ticketMap)
ans =

'2R175' 'A479GY' 'B7398' 'NZ1452'

Next, display the values that are associated with those keys in the Map. The
order of the values is determined by the order of the keys associated with
them.

This table shows the keys listed in alphabetical order:

keys values

2R175 James Enright

A479GY Sarah Latham

1-150

Map Containers

keys values

B7398 Carl Haynes

NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)
ans =

'James Enright' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Reading and Writing Using a Key Index
When reading from the Map, use the same keys that you have defined and
associated with particular values. Writing new entries to the Map requires
that you supply the values to store with a key for each one .

Note For a large Map, the keys and value methods use a lot of memory as
their outputs are cell arrays.

Reading From the Map
After you have constructed and populated your Map, you can begin to use it to
store and retrieve data. You use a Map in the same manner that you would an
array, except that you are not restricted to using integer indices. The general
syntax for looking up a value (valueN) for a given key (keyN) is shown here. If
the key is a character string, enclose it in single quotation marks:

valueN = mapObj(keyN);

You can find any single value by indexing into the map with the appropriate
key:

passenger = ticketMap('2R175')
passenger =

James Enright

Find the person who holds ticket A479GY:

1-151

1 Classes (Data Types)

sprintf(' Would passenger %s please come to the desk?\n', ...
ticketMap('A479GY'))

ans =
Would passenger Sarah Latham please come to the desk?

To access the values of multiple keys, use the values method, specifying
the keys in a cell array:

values(ticketMap, {'2R175', 'B7398'})
ans =

'James Enright' 'Carl Haynes'

You cannot use the colon operator to access a range of keys as you can with
other MATLAB classes. For example, the following statement throws an error:

ticketMap('2R175':'B7398')

Adding Key/Value Pairs
Unlike other array types, each entry in a Map consists of two items: the value
and its key. When you write a new value to a Map, you must supply its key as
well. This key must be consistent in type with any other keys in the Map.

Use the following syntax to insert additional elements into a Map:

existingMapObj(newKeyName) = newValue;

Add two more entries to the ticketMap used in the above examples, Verify
that the Map now has five key/value pairs:

ticketMap('947F4') = 'Susan Spera';
ticketMap('417R93') = 'Patricia Hughes';

ticketMap.Count
ans =

6

List all of the keys and values in Map ticketMap:

keys(ticketMap), values(ticketMap)
ans =

1-152

Map Containers

'2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'
ans =

Columns 1 through 3
'James Enright' 'Patricia Hughes' 'Susan Spera'

Columns 4 through 6
'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Building a Map with Concatenation
You can add key/value pairs to a Map in groups using concatenation. The
concatenation of Map objects is different from other classes. Instead of
building a vector of s, MATLAB returns a single Map containing the key/value
pairs from each of the contributing Map objects.

Rules for the concatenation of Map objects are:

• Only vertical vectors of Map objects are allowed. You cannot create an
m-by-n array or a horizontal vector of s. For this reason, vertcat is
supported for Map objects, but not horzcat.

• All keys in each map being concatenated must be of the same class.

• You can combine Maps with different numbers of key/value pairs. The
result is a single Map object containing key/value pairs from each of the
contributing maps:

tMap1 = containers.Map({'2R175', 'B7398', 'A479GY'}, ...
{'James Enright', 'Carl Haynes', 'Sarah Latham'});

tMap2 = containers.Map({'417R93', 'NZ1452', '947F4'}, ...
{'Patricia Hughes', 'Bradley Reid', 'Susan Spera'});

% Concatenate the two maps:
ticketMap = [tMap1; tMap2];

The result of this concatenation is the same 6-element map that was
constructed in the previous section:

ticketMap.Count
ans =

6

1-153

1 Classes (Data Types)

keys(ticketMap), values(ticketMap)
ans =

'2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'
ans =

Columns 1 through 3
'James Enright' 'Patricia Hughes' 'Susan Spera'

Columns 4 through 6
'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

• Concatenation does not include duplicate keys or their values in the
resulting Map object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1,
8 is a key to value C; in m2, it is a key to value X:

m1 = containers.Map({1, 5, 8}, {'A', 'B', 'C'});
m2 = containers.Map({8, 9, 6}, {'X', 'Y', 'Z'});

Combine m1 and m2 to form a new Map object, m:

m = [m1; m2];

The resulting Map object m has only five key/value pairs. The value C was
dropped from the concatenation because its key was not unique:

keys(m), values(m)
ans =

[1] [5] [6] [8] [9]
ans =

'A' 'B' 'Z' 'X' 'Y'

Modifying Keys and Values in the Map
In addition to reading and writing the contents of a Map, you can also delete
key/value pairs and modify any of its values or keys.

Note Keep in mind that if you have more than one handle to a Map,
modifying the handle also makes changes to the original Map. See “Modifying
a Copy of the Map” on page 1-156, below.

1-154

Map Containers

Removing Keys and Values from the Map
Use the remove method to delete any entries from a Map. When calling this
method, specify the Map object name and the key name to remove. MATLAB
deletes the key and its associated value from the Map.

The syntax for the remove method is

remove('mapName', 'keyname');

Remove one entry (the specified key and its value) from the Map object:

remove(ticketMap, 'NZ1452');
values(ticketMap)
ans =

Columns 1 through 3
'James Enright' 'Patricia Hughes' 'Susan Spera'

Columns 4 through 5
'Sarah Latham' 'Carl Haynes'

Modifying Values
You can modify any value in a Map simply by overwriting the current value.
The passenger holding ticket A479GY is identified as Sarah Latham:

ticketMap('A479GY')
ans =

Sarah Latham

Change the passenger’s first name to Anna Latham by overwriting the original
value for the A479GY key:

ticketMap('A479GY') = 'Anna Latham';

Verify the change:

ticketMap('A479GY')
ans =

'Anna Latham';

1-155

1 Classes (Data Types)

Modifying Keys
To modify an existing key while keeping the value the same, first remove
both the key and its value from the Map. Then create a new entry, this time
with the corrected key name.

Modify the ticket number belonging to passenger James Enright:

remove(ticketMap, '2R175');
ticketMap('2S185') = 'James Enright';

k = keys(ticketMap); v = values(ticketMap);
str1 = ' ''%s'' has been assigned a new\n';
str2 = ' ticket number: %s.\n';

fprintf(str1, v{1})
fprintf(str2, k{1})

'James Enright' has been assigned a new
ticket number: 2S185.

Modifying a Copy of the Map
Because ticketMap is a handle object, you need to be careful when making
copies of the Map. Keep in mind that by copying a Map object, you are really
just creating another handle to the same object. Any changes you make to
this handle are also applied to the original Map.

Make a copy of Map ticketMap. Write to this copy, and notice that the change
is applied to the original Map object itself:

copiedMap = ticketMap;

copiedMap('AZ12345') = 'unidentified person';
ticketMap('AZ12345')
ans =

unidentified person

Clean up:

remove(ticketMap, 'AZ12345');

1-156

Map Containers

clear copiedMap;

Mapping to Different Value Types
It is fairly common to store other classes, such as structures or cell arrays, in
a Map structure. However, Maps are most memory efficient when the data
stored in them belongs to one of the basic MATLAB types such as double,
char, integers, and logicals.

Mapping to a Structure Array
The following example maps airline seat numbers to structures that contain
information on who occupies the seat. To start out, create the following
structure array:

s1.ticketNum = '2S185'; s1.destination = 'Barbados';
s1.reserved = '06-May-2008'; s1.origin = 'La Guardia';
s2.ticketNum = '947F4'; s2.destination = 'St. John';
s2.reserved = '14-Apr-2008'; s2.origin = 'Oakland';
s3.ticketNum = 'A479GY'; s3.destination = 'St. Lucia';
s3.reserved = '28-Mar-2008'; s3.origin = 'JFK';
s4.ticketNum = 'B7398'; s4.destination = 'Granada';
s4.reserved = '30-Apr-2008'; s4.origin = 'JFK';
s5.ticketNum = 'NZ1452'; s5.destination = 'Aruba';
s5.reserved = '01-May-2008'; s5.origin = 'Denver';

Map five of the seats to one of these structures:

seatingMap = containers.Map(...
{'23F', '15C', '15B', '09C', '12D'}, ...
{s5, s1, s3, s4, s2});

Using this Map object, find information about the passenger, who has
reserved seat 09C:

seatingMap('09C')
ans =

ticketNum: 'B7398'
destination: 'Granada'

reserved: '30-Apr-2008'
origin: 'JFK'

1-157

1 Classes (Data Types)

seatingMap('15B').ticketNum
ans =

A479GY

Using two Maps together, you can find out the name of the person who has
reserved the seat:

passenger = ticketMap(seatingMap('15B').ticketNum)
passenger =

Anna Latham

Mapping to a Cell Array
As with structures, you can also map to a cell array in a Map object.
Continuing with the airline example of the previous sections, some of the
passengers on the flight have “frequent flyer” accounts with the airline. Map
the names of these passengers to records of the number of miles they have
used and the number of miles they still have available:

accountMap = containers.Map(...
{'Susan Spera','Carl Haynes','Anna Latham'}, ...
{{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

name = 'Carl Haynes';
acct = accountMap(name);

fprintf('%s has used %.1f miles on his/her account,\n', ...
name, acct{1})

fprintf(' and has %.1f miles remaining.\n', acct{2})

Carl Haynes has used 0.0 miles on his/her account,
and has 1342.9 miles remaining.

1-158

Combining Unlike Classes

Combining Unlike Classes

In this section...

“Combining Unlike Integer Types” on page 1-160
“Combining Integer and Noninteger Data” on page 1-162
“Empty Matrices” on page 1-162
“Concatenation Examples” on page 1-162

Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do
include elements of unlike classes when constructing a matrix, MATLAB
converts some elements so that all elements of the resulting matrix are of the
same type. (See Chapter 1, “Classes (Data Types)” for information on any of
the MATLAB classes discussed here.)

Data type conversion is done with respect to a preset precedence of classes.
The following table shows the five classes you can concatenate with an unlike
type without generating an error (that is, with the exception of character
and logical).

TYPE character integer single double logical

character character character character character invalid

integer character integer integer integer integer

single character integer single single single

double character integer single double double

logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a
matrix of type single. MATLAB converts the double element to single to
accomplish this.

1-159

1 Classes (Data Types)

Combining Unlike Integer Types
If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000)]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command retrieves
the message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To reenable the warning so that it will now be displayed, use

warning('on', intcat_msgid);

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes
After disabling the integer concatenation warnings as shown above,
concatenate the following two numbers once, and then switch their order. The
return value depends on the order in which the integers are concatenated.
The left-most type determines the data type for all elements in the vector:

A = [int16(5000) int8(50)]

1-160

Combining Unlike Classes

A =
5000 50

B = [int8(50) int16(5000)]
B =

50 127

The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum
value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]
C =

50
127

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned
Now do the same exercise with signed and unsigned integers. Again, the
left-most element determines the data type for all elements in the resulting
matrix:

A = [int8(-100) uint8(100)]
A =

-100 100

B = [uint8(100) int8(-100)]
B =

100 0

The element int8(-100) is set to zero because it is no longer signed.

1-161

1 Classes (Data Types)

MATLAB evaluates each element prior to concatenating them into a combined
array. In other words, the following statement evaluates to an 8-bit signed
integer (equal to 50) and an 8-bit unsigned integer (unsigned -50 is set to
zero) before the two elements are combined. Following the concatenation, the
second element retains its zero value but takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]
A =

50 0

Combining Integer and Noninteger Data
If you combine integers with double, single, or logical classes, all elements
of the resulting matrix are given the data type of the left-most integer. For
example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices
are ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =

5.3600
7.0100
9.4400

Concatenation Examples
Here are some examples of data type conversion during matrix construction.

Combining Single and Double Types
Combining single values with double values yields a single matrix. Note
that 5.73*10^300 is too big to be stored as a single, thus the conversion from
double to single sets it to infinity. (The class function used in this example
returns the data type for the input value).

x = [single(4.5) single(-2.8) pi 5.73*10^300]
x =

4.5000 -2.8000 3.1416 Inf

1-162

Combining Unlike Classes

class(x) % Display the data type of x
ans =

single

Combining Integer and Double Types
Combining integer values with double values yields an integer matrix. Note
that the fractional part of pi is rounded to the nearest integer. (The int8
function used in this example converts its numeric argument to an 8-bit
integer).

x = [int8(21) int8(-22) int8(23) pi 45/6]
x =

21 -22 23 3 7

class(x)
ans =

int8

Combining Character and Double Types
Combining character values with double values yields a character matrix.
MATLAB converts the double elements in this example to their character
equivalents:

x = ['A' 'B' 'C' 68 69 70]
x =

ABCDEF

class(x)
ans =

char

1-163

1 Classes (Data Types)

Combining Logical and Double Types
Combining logical values with double values yields a double matrix.
MATLAB converts the logical true and false elements in this example to
double:

x = [true false false pi sqrt(7)]
x =

1.0000 0 0 3.1416 2.6458

class(x)
ans =

double

1-164

Defining Your Own Classes

Defining Your Own Classes
All MATLAB data types are implemented as object-oriented classes. You
can add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your new
data type, and the M-file functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition
on polynomials.

With MATLAB classes you can

• Create methods that override existing MATLAB functionality

• Restrict the operations that are allowed on an object of a class

• Enforce common behavior among related classes by inheriting from the
same parent class

• Significantly increase the reuse of your code

Read more about MATLAB classes in the MATLAB Classes and
Object-Oriented Programming documentation.

1-165

1 Classes (Data Types)

1-166

2

Basic Program Components

• “MATLAB Commands” on page 2-2

• “Expressions” on page 2-6

• “Variables” on page 2-9

• “Keywords” on page 2-20

• “Special Values” on page 2-21

• “Operators” on page 2-23

• “Comma-Separated Lists” on page 2-34

• “Program Control Statements” on page 2-42

• “Dates and Times” on page 2-51

• “Regular Expressions” on page 2-59

• “Symbol Reference” on page 2-109

• “Internal MATLAB Functions” on page 2-121

2 Basic Program Components

MATLAB Commands

In this section...

“Basic Command Syntax” on page 2-2
“Entering More Than One Command on a Line” on page 2-3
“Assigning to Multiple Outputs” on page 2-3
“Commands that Call MATLAB Functions” on page 2-5

Basic Command Syntax
A simple MATLAB command computes the result of the expression to the
right of the equals sign and assigns the value of the result to the output
variable at the left. Examples of simple MATLAB commands are

x = 5.71;
A = [1 2 3; 4 5 6; 7 8 9];
I = besseli(nu, Z);

Commands that do not terminate with a semicolon display the result at your
terminal as well as assigning it to the output variable:

A = [1 2 3; 4 5 6; 7 8 9]

A =
1 2 3
4 5 6
7 8 9

If you do not explicitly assign the output of a command to a variable, MATLAB
assigns the result to the reserved word ans:

[1 2 3; 4 5 6; 7 8 9]

ans =
1 2 3
4 5 6
7 8 9

2-2

MATLAB® Commands

The value of ans changes with every command that returns an output value
that is not assigned to a variable. We recommend that you do not use ans
in place of variables as this practice tends to lead to code that is difficult
to maintain and also to programming errors. The following use of ans, for
example, is not recommended:

rand(3,5);
A = ans > 0.5;

Entering More Than One Command on a Line
You can enter more than one command on the same line, provided that you
terminate each command with a comma or semicolon. Commands terminated
with a comma display their results when they are executed; commands
terminated with a semicolon do not:

rand('state', 0);
A = rand(3,5), B = ones(3,5) * 4.7; C = A./B

A =
0.9501 0.4860 0.4565 0.4447 0.9218
0.2311 0.8913 0.0185 0.6154 0.7382
0.6068 0.7621 0.8214 0.7919 0.1763

C =
0.2022 0.1034 0.0971 0.0946 0.1961
0.0492 0.1896 0.0039 0.1309 0.1571
0.1291 0.1621 0.1748 0.1685 0.0375

Assigning to Multiple Outputs
When a command generates more than one output, specify each output in
square brackets to the left of the equals (=) sign. For example, the deal
function distributes the values of each of its inputs to separate output
variables:

[A B C] = deal([-12.3 4.89 -3.01], pi*1.46, diag(12:4:24))
A =

-12.3000 4.8900 -3.0100
B =

4.5867
C =

12 0 0 0

2-3

2 Basic Program Components

0 16 0 0
0 0 20 0
0 0 0 24

Other types of commands that can yield multiple outputs are assignments
of structure and cell arrays, and calls to multiple-output functions. This
example generates four outputs and assigns them to separate variables:

A(1).sym='H'; A(2).sym='He'; A(3).sym='Li'; A(4).sym='Be';
[hydrogen helium lithium beryllium] = A.sym

hydrogen =
H

helium =
He

lithium =
Li

beryllium =
Be

This example calls the fileparts function that returns up to four outputs,
and assigns each output to a variable:

[path file exten vers] = ...
fileparts('C:\matlab\work\strarray.mat')

path =
C:\matlab\work

file =
strarray

exten =
.mat

vers =
''

For more information on assigning structure and cell arrays to multiple
outputs, see “Assigning Struct Values to Separate Variables” on page 1-86 and
“Assigning Cell Values to Separate Variables” on page 1-116. For information
on assigning functions to multiple outputs, see “Assigning Output Arguments”
on page 3-43.

2-4

MATLAB® Commands

Assigning Fewer Than the Full Number of Outputs
When assigning structure and cell arrays or when calling multiple-output
functions, if you specify fewer output variables than there are return values,
MATLAB assigns one return value to each output variable specified and
discards the rest. Repeat the last two examples shown above, but specify
fewer than the full number of outputs that are available:

[Symbol_1 Symbol_2] = A.symb
Symbol_1 =

H
Symbol_2 =

He

[path file] = fileparts('..\work\strarray.mat')
path =

C:\matlab\work
file =

strarray

The deal function , however, does require that you specify the full number of
output variables.

Commands that Call MATLAB Functions
When entering commands that call functions in MATLAB, you can use either
of two syntaxes: command or function syntax. This is explained in the section
“Command vs. Function Syntax” on page 3-25 in the MATLAB Programming
Fundamentals documentation.

2-5

2 Basic Program Components

Expressions

In this section...

“String Evaluation” on page 2-6
“Shell Escape Functions” on page 2-7

String Evaluation
String evaluation adds power and flexibility to the MATLAB language, letting
you perform operations like executing user-supplied strings and constructing
executable strings through concatenation of strings stored in variables.

eval
The eval function evaluates a string that contains a MATLAB expression,
statement, or function call. In its simplest form, the eval syntax is

eval('string')

For example, this code uses eval on an expression to generate a Hilbert
matrix of order n.

t = '1/(m + n - 1)';
for m = 1:k

for n = 1:k
a(m,n) = eval(t);

end
end

Here is an example that uses eval on a statement.

eval('t = clock');

Constructing Strings for Evaluation. You can concatenate strings to create
a complete expression for input to eval. This code shows how eval can create
10 variables named P1, P2, ..., P10, and set each of them to a different value.

for n = 1:10
eval(['P', int2str(n), '= n .^ 2'])

2-6

Expressions

end

feval
The feval function differs from eval in that it executes a function rather than
a MATLAB expression. The function to be executed is specified in the first
argument by either a function handle or a string containing the function name.

You can use feval and the input function to choose one of several tasks
defined by M-files. This example uses function handles for the sin, cos, and
log functions.

fun = {@sin; @cos; @log};
k = input('Choose function number: ');
x = input('Enter value: ');
feval(fun{k}, x)

Shell Escape Functions
It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new MATLAB functions. A shell
escape M-function is an M-file that

1 Saves the appropriate variables on disk.

2 Runs an external program (which reads the data file, processes the data,
and writes the results back out to disk).

3 Loads the processed file back into the workspace.

For example, look at the code for garfield.m, below. This function uses an
external function, gareqn, to find the solution to Garfield’s equation.

function y = garfield(a,b,q,r)
save gardata a b q r
!gareqn
load gardata

2-7

file:///B:/matlab/doc/src/toolbox/matlab/ref/function_handle.html

2 Basic Program Components

This M-file

1 Saves the input arguments a, b, q, and r to a MAT-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C or Fortran program called
gareqn that uses the workspace variables to perform its computation.
gareqn writes its results to the gardata MAT-file.

3 Loads the gardata MAT-file described in “Using MAT-Files” to obtain the
results.

2-8

Variables

Variables

In this section...

“Types of Variables” on page 2-9
“Naming Variables” on page 2-13
“Guidelines to Using Variables” on page 2-17
“Scope of a Variable” on page 2-17
“Lifetime of a Variable” on page 2-19

Types of Variables
A MATLAB variable is essentially a tag that you assign to a value while that
value remains in memory. The tag gives you a way to reference the value in
memory so that your programs can read it, operate on it with other data,
and save it back to memory.

MATLAB provides three basic types of variables:

• “Local Variables” on page 2-9

• “Global Variables” on page 2-10

• “Persistent Variables” on page 2-12

Local Variables
Each MATLAB function has its own local variables. These are separate from
those of other functions (except for nested functions), and from those of the
base workspace. Variables defined in a function do not remain in memory from
one function call to the next, unless they are defined as global or persistent.

Scripts, on the other hand, do not have a separate workspace. They store their
variables in a workspace that is shared with the caller of the script. When
called from the command line, they share the base workspace. When called
from a function, they share that function’s workspace.

2-9

2 Basic Program Components

Note If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

Global Variables
If several functions, and possibly the base workspace, all declare a particular
name as global, then they all share a single copy of that variable. Any
assignment to that variable, in any function, is available to all the other
functions declaring it global.

Suppose, for example, you want to study the effect of the interaction
coefficients, α and β, in the Lotka-Volterra predator-prey model.

Create an M-file, lotka.m.

function yp = lotka(t,y)
%LOTKA Lotka-Volterra predator-prey model.
global ALPHA BETA
yp = [y(1) - ALPHA*y(1)*y(2); -y(2) + BETA*y(1)*y(2)];

Then interactively enter the statements

global ALPHA BETA
ALPHA = 0.01
BETA = 0.02
[t,y] = ode23(@lotka,[0,10],[1; 1]);
plot(t,y)

The two global statements make the values assigned to ALPHA and BETA at
the command prompt available inside the function defined by lotka.m. They
can be modified interactively and new solutions obtained without editing
any files.

2-10

Variables

Creating Global Variables. Each function that uses a global variable
must first declare the variable as global. It is usually best to put global
declarations toward the beginning of the function. You would declare global
variable MAXLEN as follows:

global MAXLEN

If the M-file contains subfunctions as well, then each subfunction requiring
access to the global variable must declare it as global. To access the variable
from the MATLAB command line, you must declare it as global at the
command line.

MATLAB global variable names are typically longer and more descriptive
than local variable names, and often consist of all uppercase characters. These
are not requirements, but guidelines to increase the readability of MATLAB
code, and to reduce the chance of accidentally redefining a global variable.

Displaying Global Variables. To see only those variables you have
declared as global, use the who or whos functions with the literal, global.

global MAXLEN MAXWID
MAXLEN = 36; MAXWID = 78;
len = 5; wid = 21;

whos global
Name Size Bytes Class

MAXLEN 1x1 8 double array (global)
MAXWID 1x1 8 double array (global)

Grand total is 2 elements using 16 bytes

Suggestions for Using Global Variables. A certain amount of risk is
associated with using global variables and, because of this, it is recommended
that you use them sparingly. You might, for example, unintentionally give
a global variable in one function a name that is already used for a global
variable in another function. When you run your application, one function
may overwrite the variable used by the other. This error can be difficult to
track down.

2-11

2 Basic Program Components

Another problem comes when you want to change the variable name. To
make a change without introducing an error into the application, you must
find every occurrence of that name in your code (and other people’s code, if
you share functions).

Alternatives to Using Global Variables. Instead of using a global
variable, you may be able to

• Pass the variable to other functions as an additional argument. In this
way, you make sure that any shared access to the variable is intentional.

If this means that you have to pass a number of additional variables,
you can put them into a structure or cell array and just pass it as one
additional argument.

• Use a persistent variable (described in the next section), if you only need to
make the variable persist in memory from one function call to the next.

Persistent Variables
Characteristics of persistent variables are

• You can declare and use them within M-file functions only.

• Only the function in which the variables are declared is allowed access to it.

• MATLAB does not clear them from memory when the function exits, so
their value is retained from one function call to the next.

You must declare persistent variables before you can use them in a function.
It is usually best to put your persistent declarations toward the beginning of
the function. You would declare persistent variable SUM_X as follows:

persistent SUM_X

If you clear a function that defines a persistent variable (i.e., using clear
functionname or clear all), or if you edit the M-file for that function,
MATLAB clears all persistent variables used in that function.

You can use the mlock function to keep an M-file from being cleared from
memory, thus keeping persistent variables in the M-file from being cleared
as well.

2-12

Variables

Initializing Persistent Variables. When you declare a persistent variable,
MATLAB initializes its value to an empty matrix, []. After the declaration
statement, you can assign your own value to it. This is often done using an
isempty statement, as shown here:

function findSum(inputvalue)
persistent SUM_X

if isempty(SUM_X)
SUM_X = 0;

end
SUM_X = SUM_X + inputvalue

This initializes the variable to 0 the first time you execute the function, and
then it accumulates the value on each iteration.

Naming Variables
MATLAB variable names must begin with a letter, which may be followed by
any combination of letters, digits, and underscores. MATLAB distinguishes
between uppercase and lowercase characters, so A and a are not the same
variable.

Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables.

N = namelengthmax
N =

63

The genvarname function can be useful in creating variable names that are
both valid and unique. See the genvarname reference page to find out how to
do this.

2-13

2 Basic Program Components

Verifying a Variable Name
You can use the isvarname function to make sure a name is valid before you
use it. isvarname returns 1 if the name is valid, and 0 otherwise.

isvarname 8th_column
ans =

0 % Not valid - begins with a number

Avoid Using Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name, either one of your own M-file functions or one of the
functions in the MATLAB language. If you define a variable with a function
name, you will not be able to call that function until you either remove the
variable from memory with the clear function, or invoke the function using
builtin.

For example, if you enter the following command, you will not be able to use
the MATLAB disp function until you clear the variable with clear disp.

disp = 50;

To test whether a proposed variable name is already used as a function
name, use

which -all variable_name

Potential Conflict with Function Names
There are some MATLAB functions that have names that are commonly used
as variable names in programming code. A few examples of such functions
are i, j, mode, char, size, and path.

If you need to use a variable that is also the name of a MATLAB function,
and have determined that you have no need to call the function, you should
be aware that there is still a possibility for conflict. See the following two
examples:

• “Variables Loaded From a MAT-File” on page 2-15

• “Variables In Evaluation Statements” on page 2-16

2-14

Variables

Variables Loaded From a MAT-File. The function shown below loads
previously saved data from MAT-file settings.mat. It is supposed to display
the value of one of the loaded variables, mode. However, mode is also the
name of a MATLAB function and, in this case, MATLAB interprets it as the
function and not the variable loaded from the MAT-file:

function show_mode
load settings;
whos mode
fprintf('Mode is set to %s\n', mode)

Assume that mode already exists in the MAT-file. Execution of the function
shows that, even though mode is successfully loaded into the function
workspace as a variable, when MATLAB attempts to operate on it in the last
line, it interprets mode as a function. This results in an error:

show_mode
Name Size Bytes Class

mode 1x6 12 char array

Grand total is 6 elements using 12 bytes

??? Error using ==> mode
Not enough input arguments.

Error in ==> show_mode at 4
fprintf('Mode is set to %s\n', mode)

Because MATLAB parses function M-files before they are run, it needs to
determine before runtime which identifiers in the code are variables and
which are functions. The function in this example does not establish mode as
a variable name and, as a result, MATLAB interprets it as a function name
instead.

There are several ways to make this function work as intended without
having to change the variable name. Both indicate to MATLAB that the name
represents a variable, and not a function:

• Name the variable explicitly in the load statement:

2-15

2 Basic Program Components

function show_mode
load settings mode;
whos mode
fprintf('Mode is set to %s\n', mode)

• Initialize the variable (e.g., set it to an empty matrix or empty string) at
the start of the function:

function show_mode
mode = '';
load settings;
whos mode
fprintf('Mode is set to %s\n', mode)

Variables In Evaluation Statements. Variables used in evaluation
statements such as eval, evalc, and evalin can also be mistaken for function
names. The following M-file defines a variable named length that conflicts
with MATLAB length function:

function find_area
eval('length = 12; width = 36;');
fprintf('The area is %d\n', length .* width)

The second line of this code would seem to establish length as a variable name
that would be valid when used in the statement on the third line. However,
when MATLAB parses this line, it does not consider the contents of the string
that is to be evaluated. As a result, MATLAB has no way of knowing that
length was meant to be used as a variable name in this program, and the
name defaults to a function name instead, yielding the following error:

find_area
??? Error using ==> length
Not enough input arguments.

To force MATLAB to interpret length as a variable name, use it in an explicit
assignment statement first:

function find_area
length = [];
eval('length = 12; width = 36;');
fprintf('The area is %d\n', length .* width)

2-16

Variables

Guidelines to Using Variables
The same guidelines that apply to MATLAB variables at the command line
also apply to variables in M-files:

• You do not need to type or declare variables used in M-files (with the
possible exception of designating them as global or persistent).

• Before assigning one variable to another, you must be sure that the
variable on the right-hand side of the assignment has a value.

• Any operation that assigns a value to a variable creates the variable, if
needed, or overwrites its current value, if it already exists.

Scope of a Variable
MATLAB stores variables in a part of memory called a workspace. The base
workspace holds variables created during your interactive MATLAB session
and also any variables created by running M-file scripts. Variables created at
the MATLAB command prompt can also be used by scripts without having to
declare them as global.

Functions do not use the base workspace. Every function has its own
function workspace. Each function workspace is kept separate from the base
workspace and all other workspaces to protect the integrity of the data used
by that function. Even subfunctions that are defined in the same M-file have
a separate function workspace.

Extending Variable Scope
In most cases, variables created within a function are known only within that
function. These variables are not available at the MATLAB command prompt
or to any other function or subfunction.

Passing Variables from Another Workspace. The most secure way to
extend the scope of a function variable is to pass it to other functions as an
argument in the function call. Since MATLAB passes data only by value,
you also need to add the variable to the return values of any function that
modifies its value.

2-17

2 Basic Program Components

Evaluating in Another Workspace Using evalin. Functions can also
obtain variables from either the base or the caller’s workspace using the
evalin function. The example below, compareAB_1, evaluates a command in
the context of the MATLAB command line, taking the values of variables A
and B from the base workspace.

Define A and B in the base workspace:

A = [13 25 82 68 9 15 77]; B = [63 21 71 42 30 15 22];

Use evalin to evaluate the command A(find(A<=B)) in the context of the
MATLAB base workspace:

function C = compareAB_1
C = evalin('base', 'A(find(A<=B))');

Call the function. You do not have to pass the variables because they are
made available to the function via the evalin function:

C = compareAB_1
C =

13 9 15

You can also evaluate in the context of the caller’s workspace by specifying
'caller' (instead of 'base') as the first input argument to evalin.

Using Global Variables. A third way to extend variable scope is to declare
the variable as global within every function that needs access to it. If you
do this, you need make sure that no functions with access to the variable
overwrite its value unintentionally. For this reason, it is recommended that
you limit the use of global variables.

Create global vectors A and B in the base workspace:

global A
global B
A = [13 25 82 68 9 15 77]; B = [63 21 71 42 30 15 22];

Also declare them in the function to be called:

function C = compareAB_2
global A

2-18

Variables

global B

C = A(find(A<=B));

Call the function. Again, you do not have to pass A and B as arguments to the
called function:

C = compareAB_2
C =

13 9 15

Scope in Nested Functions
Variables within nested functions are accessible to more than just their
immediate function. As a general rule, the scope of a local variable is the
largest containing function body in which the variable appears, and all
functions nested within that function. For more information on nested
functions, see “Variable Scope in Nested Functions” on page 4-19.

Lifetime of a Variable
Variables created at the MATLAB command prompt or in an M-file script
exist until you clear them or end your MATLAB session. Variables in
functions exist only until the function completes unless they have been
declared as global or persistent.

2-19

2 Basic Program Components

Keywords
The MATLAB software reserves certain words for its own use as keywords of
the language. To list the keywords, type

iskeyword
ans =

'break'
'case'
'catch'

.

.

.

See the online function reference pages to learn how to use these keywords.

You should not use MATLAB keywords other than for their intended purpose.
For example, a keyword should not be used as follows:

while = 5;
??? while = 5;

|
Error: Expected a variable, function, or constant, found "=".

2-20

Special Values

Special Values
Several functions return important special values that you can use in your
M-files.

Function Return Value

ans Most recent answer (variable). If you do not assign
an output variable to an expression, MATLAB
automatically stores the result in ans.

eps Floating-point relative accuracy. This is the
tolerance the MATLAB software uses in its
calculations.

intmax Largest 8-, 16-, 32-, or 64-bit integer your computer
can represent.

intmin Smallest 8-, 16-, 32-, or 64-bit integer your
computer can represent.

realmax Largest floating-point number your computer can
represent.

realmin Smallest positive floating-point number your
computer can represent.

pi 3.1415926535897...

i, j Imaginary unit.
inf Infinity. Calculations like n/0, where n is any

nonzero real value, result in inf.
NaN Not a Number, an invalid numeric value.

Expressions like 0/0 and inf/inf result in a NaN,
as do arithmetic operations involving a NaN. Also, if
n is complex with a zero real part, then n/0 returns
a value with a NaN real part.

computer Computer type.
version MATLAB version string.

2-21

2 Basic Program Components

Here are some examples that use these values in MATLAB expressions.

x = 2 * pi
x =

6.2832

A = [3+2i 7-8i]
A =

3.0000 + 2.0000i 7.0000 - 8.0000i

tol = 3 * eps
tol =

6.6613e-016

intmax('uint64')
ans =

18446744073709551615

2-22

Operators

Operators

In this section...

“Arithmetic Operators” on page 2-23
“Relational Operators” on page 2-24
“Logical Operators” on page 2-25
“Operator Precedence” on page 2-32

Arithmetic Operators
Arithmetic operators perform numeric computations, for example, adding two
numbers or raising the elements of an array to a given power. The following
table provides a summary. For more information, see the arithmetic operators
reference page.

Operator Description

+ Addition
- Subtraction
.* Multiplication
./ Right division
.\ Left division
+ Unary plus
- Unary minus
: Colon operator
.^ Power
.' Transpose
' Complex conjugate transpose
* Matrix multiplication
/ Matrix right division
\ Matrix left division
^ Matrix power

2-23

file:///B:/matlab/doc/src/toolbox/matlab/ref/arithmeticoperators.html

2 Basic Program Components

Arithmetic Operators and Arrays
Except for some matrix operators, MATLAB arithmetic operators work on
corresponding elements of arrays with equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a
scalar. If one operand is a scalar and the other is not, MATLAB applies
the scalar to every element of the other operand—this property is known
as scalar expansion.

This example uses scalar expansion to compute the product of a scalar
operand and a matrix.

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

3 * A
ans =

24 3 18
9 15 21

12 27 6

Relational Operators
Relational operators compare operands quantitatively, using operators like
“less than” and “not equal to.” The following table provides a summary. For
more information, see the relational operators reference page.

Operator Description

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

2-24

file:///B:/matlab/doc/src/toolbox/matlab/ref/relationaloperators.html

Operators

Relational Operators and Arrays
The MATLAB relational operators compare corresponding elements
of arrays with equal dimensions. Relational operators always operate
element-by-element. In this example, the resulting matrix shows where an
element of A is equal to the corresponding element of B.

A = [2 7 6;9 0 5;3 0.5 6];
B = [8 7 0;3 2 5;4 -1 7];

A == B
ans =

0 1 0
0 0 1
0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the
other is not, MATLAB tests the scalar against every element of the other
operand. Locations where the specified relation is true receive logical 1.
Locations where the relation is false receive logical 0.

Relational Operators and Empty Arrays
The relational operators work with arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with
that of all other binary operators, such as +, -, >, <, &, |, etc.

To test for empty arrays, use the function

isempty(A)

Logical Operators
MATLAB offers three types of logical operators and functions:

• Element-wise — operate on corresponding elements of logical arrays.

2-25

2 Basic Program Components

• Bit-wise — operate on corresponding bits of integer values or arrays.

• Short-circuit — operate on scalar, logical expressions.

The values returned by MATLAB logical operators and functions, with the
exception of bit-wise functions, are of type logical and are suitable for use
with logical indexing.

Element-Wise Operators and Functions
The following logical operators and functions perform elementwise logical
operations on their inputs to produce a like-sized output array.

The examples shown in the following table use vector inputs A and B, where

A = [0 1 1 0 1];
B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is
true (nonzero) in both arrays, and 0 for all other
elements.

A & B =
01001

| Returns 1 for every element location that is
true (nonzero) in either one or the other, or both
arrays, and 0 for all other elements.

A | B =
11101

~ Complements each element of the input array, A. ~A =
10010

xor Returns 1 for every element location that is true
(nonzero) in only one array, and 0 for all other
elements.

xor(A,B)
= 10100

For operators and functions that take two array operands, (&, |, and xor),
both arrays must have equal dimensions, with each dimension being the
same size. The one exception to this is where one operand is a scalar and the
other is not. In this case, MATLAB tests the scalar against every element
of the other operand.

2-26

Operators

Note MATLAB converts any finite nonzero, numeric values used as inputs to
logical expressions to logical 1, or true.

Operator Overloading. You can overload the &, |, and ~ operators to make
their behavior dependent upon the class on which they are being used. Each
of these operators has a representative function that is called whenever that
operator is used. These are shown in the table below.

Logical
Operation Equivalent Function

A & B and(A, B)

A | B or(A, B)

~A not(A)

Other Array Functions. Two other MATLAB functions that operate
logically on arrays, but not in an elementwise fashion, are any and all. These
functions show whether any or all elements of a vector, or a vector within
a matrix or an array, are nonzero.

When used on a matrix, any and all operate on the columns of the matrix.
When used on an N-dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

A = [0 1 2;
0 -3 8;
0 5 0];

2-27

2 Basic Program Components

Function Description Example

any(A) Returns 1 for a vector where any element
of the vector is true (nonzero), and 0 if no
elements are true.

any(A) ans = 0
1 1

all(A) Returns 1 for a vector where all elements of
the vector are true (nonzero), and 0 if all
elements are not true.

all(A) ans = 0
1 0

Note The all and any functions ignore any NaN values in the input arrays.

Short-Circuiting in Elementwise Operators. When used in the context of
an if or while expression, and only in this context, the elementwise | and &
operators use short-circuiting in evaluating their expressions. That is, A|B
and A&B ignore the second operand, B, if the first operand, A, is sufficient to
determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A = 1; B = [];
if(A|B) disp 'The statement is true', end;

The statement is true

while the reverse logical expression, which does not short-circuit, evaluates
to false

if(B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows that a
logical expression such as the following, which under most circumstances is
invalid due to a size mismatch between A and B,

A = [1 1]; B = [2 0 1];
A|B % This generates an error.

works within the context of an if or while expression:

if (A|B) disp 'The statement is true', end;

2-28

Operators

The statement is true

Logical Expressions Using the find Function. The find function
determines the indices of array elements that meet a given logical condition.
The function is useful for creating masks and index matrices. In its most
general form, find returns a single vector of indices. This vector can be used
to index into arrays of any size or shape.

For example,

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = find(A > 8);
A(i) = 100
A =

100 2 3 100
5 100 100 8

100 7 6 100
4 100 100 1

Note An alternative to using find in this context is to index into the matrix
using the logical expression itself. See the example below.

The last two statements of the previous example can be replaced with this
one statement:

A(A > 8) = 100;

You can also use find to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A = magic(4)
A =

16 2 3 13

2-29

2 Basic Program Components

5 11 10 8
9 7 6 12
4 14 15 1

[row, col] = find(A > 12)
row =

1
4
4
1

col =
1
2
3
4

Bit-Wise Functions
The following functions perform bit-wise logical operations on nonnegative
integer inputs. Inputs may be scalar or in arrays. If in arrays, these functions
produce a like-sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28; % binary 11100
B = 21; % binary 10101

Function Description Example

bitand Returns the bit-wise AND
of two nonnegative integer
arguments.

bitand(A,B) = 20 (binary
10100)

bitor Returns the bit-wise OR
of two nonnegative integer
arguments.

bitor(A,B) = 29 (binary
11101)

2-30

Operators

Function Description Example

bitcmp Returns the bit-wise
complement as an n-bit
number, where n is the
second input argument to
bitcmp.

bitcmp(A,5) = 3 (binary
00011)

bitxor Returns the bit-wise exclusive
OR of two nonnegative integer
arguments.

bitxor(A,B) = 9 (binary
01001)

Short-Circuit Operators
The following operators perform AND and OR operations on logical
expressions containing scalar values. They are short-circuit operators in
that they evaluate their second operand only when the result is not fully
determined by the first operand.

Operator Description

&& Returns logical 1 (true) if both inputs evaluate to true, and
logical 0 (false) if they do not.

|| Returns logical 1 (true) if either input, or both, evaluate to
true, and logical 0 (false) if they do not.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false),
regardless of the value of B. Under these circumstances, there is no need
to evaluate B because the result is already known. In this case, MATLAB
short-circuits the statement by evaluating only the first term.

A similar case is when you OR two terms and the first term is true. Again,
regardless of the value of B, the statement will evaluate to true. There is no
need to evaluate the second term, and MATLAB does not do so.

2-31

2 Basic Program Components

Advantage of Short-Circuiting. You can use the short-circuit operators
to evaluate an expression only when certain conditions are satisfied. For
example, you want to execute an M-file function only if the M-file resides on
the current MATLAB path.

Short-circuiting keeps the following code from generating an error when the
file, myfun.m, cannot be found:

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

Similarly, this statement avoids divide-by-zero errors when b equals zero:

x = (b ~= 0) && (a/b > 18.5)

You can also use the && and || operators in if and while statements to take
advantage of their short-circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

Operator Precedence
You can build expressions that use any combination of arithmetic, relational,
and logical operators. Precedence levels determine the order in which
MATLAB evaluates an expression. Within each precedence level, operators
have equal precedence and are evaluated from left to right. The precedence
rules for MATLAB operators are shown in this list, ordered from highest
precedence level to lowest precedence level:

1 Parentheses ()

2 Transpose (.'), power (.^), complex conjugate transpose ('), matrix
power (^)

3 Unary plus (+), unary minus (-), logical negation (~)

4 Multiplication (.*), right division (./), left division (.\), matrix
multiplication (*), matrix right division (/), matrix left division (\)

5 Addition (+), subtraction (-)

6 Colon operator (:)

2-32

Operators

7 Less than (<), less than or equal to (<=), greater than (>), greater than or
equal to (>=), equal to (==), not equal to (~=)

8 Element-wise AND (&)

9 Element-wise OR (|)

10 Short-circuit AND (&&)

11 Short-circuit OR (||)

Precedence of AND and OR Operators
MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right, the
expression a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses
to explicitly specify the intended precedence of statements containing
combinations of & and |.

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence
The default precedence can be overridden using parentheses, as shown in
this example:

A = [3 9 5];
B = [2 1 5];
C = A./B.^2
C =

0.7500 9.0000 0.2000

C = (A./B).^2
C =

2.2500 81.0000 1.0000

2-33

2 Basic Program Components

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 2-34
“Generating a Comma-Separated List” on page 2-34
“Assigning Output from a Comma-Separated List” on page 2-36
“Assigning to a Comma-Separated List” on page 2-37
“How to Use the Comma-Separated Lists” on page 2-38
“Fast Fourier Transform Example” on page 2-40

What Is a Comma-Separated List?
Typing in a series of numbers separated by commas gives you what is called a
comma-separated list. The MATLAB software returns each value individually:

1, 2, 3
ans =

1
ans =

2
ans =

3

Such a list, by itself, is not very useful. But when used with large and
more complex data structures like MATLAB structures and cell arrays, the
comma-separated list can enable you to simplify your MATLAB code.

Generating a Comma-Separated List
This section describes how to generate a comma-separated list from either a
cell array or a MATLAB structure.

Generating a List from a Cell Array
Extracting multiple elements from a cell array yields a comma-separated list.
Given a 4-by-6 cell array as shown here

2-34

Comma-Separated Lists

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

C
C =

[2] [10] [18] [26] [34] [42]
[4] [12] [20] [28] [36] [44]
[6] [14] [22] [30] [38] [46]
[8] [16] [24] [32] [40] [48]

extracting the fifth column generates the following comma-separated list:

C{:, 5}
ans =

34
ans =

36
ans =

38
ans =

40

This is the same as explicitly typing

C{1, 5}, C{2, 5}, C{3, 5}, C{4, 5}

Generating a List from a Structure
For structures, extracting a field of the structure that exists across one of its
dimensions yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure
with six fields: f1 through f6. Read field f5 for all rows and MATLAB returns
a comma-separated list:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

S.f5
ans =

34
ans =

2-35

2 Basic Program Components

36
ans =

38
ans =

40

This is the same as explicitly typing

S(1).f5, S(2).f5, S(3).f5, S(4).f5

Assigning Output from a Comma-Separated List
You can assign any or all consecutive elements of a comma-separated list to
variables with a simple assignment statement. Using the cell array C from
the previous section, assign the first row to variables c1 through c6:

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

[c1 c2 c3 c4 c5 c6] = C{1,1:6};

c5
c5 =

34

If you specify fewer output variables than the number of outputs returned by
the expression, MATLAB assigns the first N outputs to those N variables, and
then discards any remaining outputs. In this next example, MATLAB assigns
C{1,1:3} to the variables c1, c2, and c3, and then discards C{1,4:6}:

[c1 c2 c3] = C{1,1:6};

You can assign structure outputs in the same manner:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

[sf1 sf2 sf3] = S.f5;

sf3
sf3 =

38

2-36

Comma-Separated Lists

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List
The simplest way to assign multiple values to a comma-separated list is to
use the deal function. This function distributes all of its input arguments to
the elements of a comma-separated list.

This example initializes a comma-separated list to a set of vectors in a cell
array, and then uses deal to overwrite each element in the list:

c{1} = [31 07]; c{2} = [03 78];

c{:}
ans =

31 7
ans =

3 78

[c{:}] = deal([10 20],[14 12]);

c{:}
ans =

10 20
ans =

14 12

This example does the same as the one above, but with a comma-separated
list of vectors in a structure field:

s(1).field1 = [31 07]; s(2).field1 = [03 78];

s.field1
ans =

31 7
ans =

3 78

2-37

2 Basic Program Components

[s.field1] = deal([10 20],[14 12]);

s.field1
ans =

10 20
ans =

14 12

How to Use the Comma-Separated Lists
Common uses for comma-separated lists are

• “Constructing Arrays” on page 2-38

• “Displaying Arrays” on page 2-39

• “Concatenation” on page 2-39

• “Function Call Arguments” on page 2-39

• “Function Return Values” on page 2-40

The following sections provide examples of using comma-separated lists with
cell arrays. Each of these examples applies to MATLAB structures as well.

Constructing Arrays
You can use a comma-separated list to enter a series of elements when
constructing a matrix or array. Note what happens when you insert a list of
elements as opposed to adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four
individual elements:

A = {'Hello', C{:, 5}, magic(4)}
A =

'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

A = {'Hello', C, magic(4)}
A =

'Hello' {4x6 cell} [4x4 double]

2-38

Comma-Separated Lists

Displaying Arrays
Use a list to display all or part of a structure or cell array:

A{:}
ans =

Hello
ans =

34
ans =

36
ans =

38
.
.
.

Concatenation
Putting a comma-separated list inside square brackets extracts the specified
elements from the list and concatenates them:

A = [C{:, 5:6}]
A =

34 36 38 40 42 44 46 48

whos A
Name Size Bytes Class

A 1x8 64 double array

Function Call Arguments
When writing the code for a function call, you enter the input arguments as a
list with each argument separated by a comma. If you have these arguments
stored in a structure or cell array, then you can generate all or part of the
argument list from the structure or cell array instead. This can be especially
useful when passing in variable numbers of arguments.

2-39

2 Basic Program Components

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Function Return Values
MATLAB functions can also return more than one value to the caller. These
values are returned in a list with each value separated by a comma. Instead
of listing each return value, you can use a comma-separated list with a
structure or cell array. This becomes more useful for those functions that
have variable numbers of return values.

This example returns four values to a cell array:

C = cell(1, 4);
[C{:}] = fileparts('work/mytests/strArrays.mat')
C =

'work/mytests' 'strArrays' '.mat' ''

Fast Fourier Transform Example
The fftshift function swaps the left and right halves of each dimension of
an array. For a simple vector such as [0 2 4 6 8 10] the output would be
[6 8 10 0 2 4]. For a multidimensional array, fftshift performs this
swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown
above, the index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1
2 3]. The function then uses this index vector to reposition the elements. For
a multidimensional array, fftshift must construct an index vector for each
dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

2-40

Comma-Separated Lists

numDims = ndims(x);
idx = cell(1, numDims);

for k = 1:numDims
m = size(x, k);
p = ceil(m/2);
idx{k} = [p+1:m 1:p];
end

y = x(idx{:});

The function stores the index vectors in cell array idx. Building this cell array
is relatively simple. For each of the N dimensions, determine the size of that
dimension and find the integer index nearest the midpoint. Then, construct a
vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list
for the indexing operation, fftshift shifts arrays of any dimension using
just a single operation: y = x(idx{:}). If you were to use explicit indexing,
you would need to write one if statement for each dimension you want the
function to handle:

if ndims(x) == 1
y = x(index1);

else if ndims(x) == 2
y = x(index1, index2);

end

Another way to handle this without a comma-separated list would be to loop
over each dimension, converting one dimension at a time and moving data
each time. With a comma-separated list, you move the data just once. A
comma-separated list makes it very easy to generalize the swapping operation
to an arbitrary number of dimensions.

2-41

2 Basic Program Components

Program Control Statements

In this section...

“Conditional Control — if, switch” on page 2-42
“Loop Control — for, while, continue, break” on page 2-46
“Error Control — try, catch” on page 2-49
“Program Termination — return” on page 2-50

Conditional Control — if, switch
This group of control statements enables you to select at run-time which block
of code is executed. To make this selection based on whether a condition is
true or false, use the if statement (which may include else or elseif).
To select from a number of possible options depending on the value of
an expression, use the switch and case statements (which may include
otherwise).

You cannot define nested functions within a conditional control block. Nested
functions must always be defined at the top level of a function.

if, else, and elseif
if evaluates a logical expression and executes a group of statements based on
the value of the expression. In its simplest form, its syntax is

if logical_expression
statements

end

If the logical expression is true (that is, if it evaluates to logical 1), the
MATLAB software executes all the statements between the if and end lines.
It resumes execution at the line following the end statement. If the condition
is false (evaluates to logical 0), MATLAB skips all the statements between
the if and end lines, and resumes execution at the line following the end
statement.

For example,

2-42

Program Control Statements

if rem(a, 2) == 0
disp('a is even')
b = a/2;

end

You can nest any number of if statements.

If the logical expression evaluates to a nonscalar value, all the elements of
the argument must be nonzero. For example, assume X is a matrix. Then
the statement

if X
statements

end

is equivalent to

if all(X(:))
statements

end

The else and elseif statements further conditionalize the if statement:

• The else statement has no logical condition. The statements associated
with it execute if the preceding if (and possibly elseif condition)
evaluates to logical 0 (false).

• The elseif statement has a logical condition that it evaluates if the
preceding if (and possibly elseif condition) is false. The statements
associated with it execute if its logical condition evaluates to logical 1
(true). You can have multiple elseif statements within an if block.

if n < 0 % If n negative, display error message.

disp('Input must be positive');

elseif rem(n,2) == 0 % If n positive and even, divide by 2.

A = n/2;

else

A = (n+1)/2; % If n positive and odd, increment and divide.

end

if Statements and Empty Arrays. An if condition that reduces to an
empty array represents a false condition. That is,

2-43

2 Basic Program Components

if A
S1

else
S0

end

executes statement S0 when A is an empty array.

switch, case, and otherwise
switch executes certain statements based on the value of a variable or
expression. Its basic form is

switch expression (scalar or string)
case value1

statements % Executes if expression is value1
case value2

statements % Executes if expression is value2
.
.
.

otherwise
statements % Executes if expression does not

% match any case
end

This block consists of

• The word switch followed by an expression to evaluate.

• Any number of case groups. These groups consist of the word case followed
by a possible value for the expression, all on a single line. Subsequent lines
contain the statements to execute for the given value of the expression.
These can be any valid MATLAB statement including another switch
block. Execution of a case group ends when MATLAB encounters the next
case statement or the otherwise statement. Only the first matching case
is executed.

• An optional otherwise group. This consists of the word otherwise,
followed by the statements to execute if the expression’s value is not
handled by any of the preceding case groups. Execution of the otherwise
group ends at the end statement.

2-44

Program Control Statements

• An end statement.

switch works by comparing the input expression to each case value. For
numeric expressions, a case statement is true if (value==expression). For
string expressions, a case statement is true if strcmp(value,expression).

The code below shows a simple example of the switch statement. It checks
the variable input_num for certain values. If input_num is -1, 0, or 1, the
case statements display the value as text. If input_num is none of these
values, execution drops to the otherwise statement and the code displays the
text 'other value'.

switch input_num
case -1

disp('negative one');
case 0

disp('zero');
case 1

disp('positive one');
otherwise

disp('other value');
end

Note For C programmers, unlike the C language switch construct, the
MATLAB switch does not “fall through.” That is, if the first case statement
is true, other case statements do not execute. Therefore, break statements
are not used.

switch can handle multiple conditions in a single case statement by enclosing
the case expression in a cell array.

switch var
case 1

disp('1')
case {2,3,4}

disp('2 or 3 or 4')
case 5

disp('5')
otherwise

2-45

2 Basic Program Components

disp('something else')
end

Loop Control — for, while, continue, break
With loop control statements, you can repeatedly execute a block of code,
looping back through the block while keeping track of each iteration with an
incrementing index variable. Use the for statement to loop a specific number
of times. The while statement is more suitable for basing the loop execution
on how long a condition continues to be true or false. The continue and break
statements give you more control on exiting the loop.

You cannot define nested functions within a loop control block. Nested
functions must always be defined at the top level of a function.

Note You can often speed up the execution of MATLAB code by replacing
for and while loops with vectorized code. See “Techniques for Improving
Performance” on page 10-4 for more information on this.

for
The for loop executes a statement or group of statements a predetermined
number of times. Its syntax is

for index = start:increment:end
statements

end

The default increment is 1. You can specify any increment, including a
negative one. For positive indices, execution terminates when the value of
the index exceeds the end value; for negative increments, it terminates when
the index is less than the end value.

For example, this loop executes five times.

for n = 2:6
x(n) = 2 * x(n - 1);

end

2-46

Program Control Statements

You can nest multiple for loops.

for m = 1:5
for n = 1:100

A(m, n) = 1/(m + n - 1);
end

end

Note You can often speed up the execution of MATLAB code by replacing
for and while loops with vectorized code. See “Vectorizing Loops” on page
10-4 for details.

Using Arrays as Indices. The index of a for loop can be an array. For
example, consider an m-by-n array A. The statement

for k = A
statements

end

sets k equal to the vector A(:,i), where i is the iteration number of the loop.
For the first loop iteration, k is equal to A(:,1); for the second, k is equal
to A(:,2); and so on until k equals A(:,n). That is, the loop iterates for a
number of times equal to the number of columns in A. For each iteration, k is
a vector containing one of the columns of A.

while
The while loop executes a statement or group of statements repeatedly as
long as the controlling expression is true (1). Its syntax is

while expression
statements

end

If the expression evaluates to a matrix, all its elements must be 1 for
execution to continue. To reduce a matrix to a scalar value, use the all and
any functions.

2-47

2 Basic Program Components

For example, this while loop finds the first integer n for which n! (n factorial)
is a 100-digit number.

n = 1;
while prod(1:n) < 1e100

n = n + 1;
end

Exit a while loop at any time using the break statement.

while Statements and Empty Arrays. A while condition that reduces to
an empty array represents a false condition. That is,

while A, S1, end

never executes statement S1 when A is an empty array.

continue
The continue statement passes control to the next iteration of the for or
while loop in which it appears, skipping any remaining statements in the body
of the loop. In for loops, the loop counter is incremented by the appropriate
value (either 1 or the specified step value) at the start of the next iteration.

continue works the same way in nested loops. That is, execution continues at
the beginning of the loop in which the continue statement was encountered.

The example below shows a continue loop that counts the lines of code in the
file, magic.m, skipping all blank lines and comments. A continue statement
is used to advance to the next line in magic.m without incrementing the count
whenever a blank line or comment line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) || strncmp(line,'%',1) || ~ischar(line)

continue
end
count = count + 1;

end

2-48

Program Control Statements

fprintf('%d lines\n',count);
fclose(fid);

break
The break statement terminates the execution of a for loop or while loop.
When a break statement is encountered, execution continues with the next
statement outside of the loop. In nested loops, break exits from the innermost
loop only.

The example below shows a while loop that reads the contents of the file
fft.m into a MATLAB character array. A break statement is used to exit the
while loop when the first empty line is encountered. The resulting character
array contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';

while ~feof(fid)
line = fgetl(fid);
if isempty(line) || ~ischar(line)

break
end
s = sprintf('%s%s\n', s, line);

end
disp(s);

fclose(fid);

Error Control — try, catch
Error control statements provide a way for you to take certain actions in the
event of an error. Use the try statement to test whether a certain command
in your code generates an error. If an error does occur within the try block,
MATLAB immediately jumps to the corresponding catch block. The catch
part of the statement needs to respond in some way to the error.

You cannot define nested functions within a try-catch block. Nested
functions must always be defined at the top level of a function.

2-49

2 Basic Program Components

try and catch
The general form of a try-catch statement sequence is

try
statement
...
statement

catch
statement
...
statement

end

In this sequence, the statements between try and catch are executed until
an error occurs. The statements between catch and end are then executed.
Use lasterr to see the cause of the error. If an error occurs between catch
and end, MATLAB terminates execution unless another try-catch sequence
has been established.

Program Termination — return
Program termination control enables you to exit from your program at some
point prior to its normal termination point.

return
After a MATLAB function runs to completion, it terminates and returns
control either to the function that called it, or to the keyboard. If you need to
exit a function prior to the point of normal completion, you can force an early
termination using the return function. return immediately terminates the
current sequence of commands and exits the currently running function.

return is also used to terminate keyboard mode.

2-50

Dates and Times

Dates and Times

In this section...

“Overview” on page 2-51
“Types of Date Formats” on page 2-51
“Conversions Between Date Formats” on page 2-53
“Date String Formats” on page 2-54
“Output Formats” on page 2-55
“Current Date and Time” on page 2-56
“Function Summary” on page 2-57

Overview
The MATLAB software represents date and time information in either of
three formats: date strings, serial date numbers, or date vectors. You have
the choice of using any of these formats. If you work with more than one date
and time format, MATLAB provides functions to help you easily convert from
one format to another, (e.g., from a string to a serial date number).

When using date strings, you have an additional option of choosing from 19
different string styles to express date and/or time information.

Types of Date Formats
The three MATLAB date and time formats are

• “Date Strings” on page 2-52

• “Serial Date Numbers” on page 2-52

• “Date Vectors” on page 2-53

This table shows examples of the three formats.

Date Format Example

Date string 02-Oct-1996

2-51

2 Basic Program Components

Date Format Example

Serial date number 729300

Date vector 1996 10 2 0 0 0

Date Strings
There are a number of different styles in which to express date and time
information as a date string. For example, several possibilities for October 31,
2003 at 3:45:17 in the afternoon are

31-Oct-2003 15:45:17
10/31/03
15:45:17
03:45:17 PM

If you are working with a small number of dates at the MATLAB command
line, then date strings are often the most convenient format to use.

Note The MATLAB date function returns the current date as a string.

Serial Date Numbers
A serial date number represents a calendar date as the number of days that
has passed since a fixed base date. In MATLAB, serial date number 1 is
January 1, 0000. MATLAB also uses serial time to represent fractions of days
beginning at midnight; for example, 6 p.m. equals 0.75 serial days. So the
string ’31-Oct-2003, 6:00 pm’ in MATLAB is date number 731885.75.

MATLAB works internally with serial date numbers. If you are using
functions that handle large numbers of dates or doing extensive calculations
with dates, you get better performance if you use date numbers.

Note The MATLAB now function returns the current date and time as a
serial date number.

2-52

Dates and Times

Date Vectors
Date vectors are an internal format for some MATLAB functions; you do not
typically use them in calculations. A date vector contains the elements [year
month day hour minute second].

Note The MATLAB clock function returns the current date and time as a
serial vector.

Conversions Between Date Formats
Functions that convert between date formats are shown below.

Function Description

datenum Convert a date string to a serial date number.
datestr Convert a serial date number to a date string.
datevec Split a date number or date string into individual

date elements.

Here are some examples of conversions from one date format to another:

d1 = datenum('02-Oct-1996')
d1 =

729300

d2 = datestr(d1 + 10)
d2 =

12-Oct-1996

dv1 = datevec(d1)
dv1 =

1996 10 2 0 0 0

dv2 = datevec(d2)
dv2 =

1996 10 12 0 0 0

2-53

2 Basic Program Components

Date String Formats
The datenum function is important for doing date calculations efficiently.
datenum takes an input string in any of several formats, with 'dd-mmm-yyyy',
'mm/dd/yyyy', or 'dd-mmm-yyyy, hh:mm:ss.ss' most common. You can
form up to six fields from letters and digits separated by any other characters:

• The day field is an integer from 1 to 31.

• The month field is either an integer from 1 to 12 or an alphabetic string
with at least three characters.

• The year field is a nonnegative integer: if only two digits are specified,
then a year 19yy is assumed; if the year is omitted, then the current year
is used as a default.

• The hours, minutes, and seconds fields are optional. They are integers
separated by colons or followed by 'AM' or 'PM'.

For example, if the current year is 1996, then these are all equivalent:

'17-May-1996'
'17-May-96'
'17-May'
'May 17, 1996'
'5/17/96'
'5/17'

and both of these represent the same time:

'17-May-1996, 18:30'
'5/17/96/6:30 pm'

Note that the default format for numbers-only input follows the American
convention. Thus 3/6 is March 6, not June 3.

If you create a vector of input date strings, use a column vector and be sure all
strings are the same length. Fill in with spaces or zeros.

2-54

Dates and Times

Output Formats
The command datestr(D, dateform) converts a serial date D to one of 19
different date string output formats showing date, time, or both. The default
output for dates is a day-month-year string: 01-Mar-1996. You select an
alternative output format by using the optional integer argument dateform.

This table shows the date string formats that correspond to each dateform
value.

dateform Format Description

0 01-Mar-1996 15:45:17 day-month-year
hour:minute:second

1 01-Mar-1996 day-month-year
2 03/01/96 month/day/year
3 Mar month, three letters
4 M month, single letter
5 3 month
6 03/01 month/day
7 1 day of month
8 Wed day of week, three letters
9 W day of week, single letter
10 1996 year, four digits
11 96 year, two digits
12 Mar96 month year

13 15:45:17 hour:minute:second
14 03:45:17 PM hour:minute:second AM or PM
15 15:45 hour:minute
16 03:45 PM hour:minute AM or PM
17 Q1-96 calendar quarter-year
18 Q1 calendar quarter

2-55

2 Basic Program Components

Converting Output Format with datestr
Here are some examples of converting the date March 1, 1996 to various
forms using the datestr function:

d = '01-Mar-1999'
d =

01-Mar-1999

datestr(d)
ans =

01-Mar-1999

datestr(d, 2)
ans =

03/01/99

datestr(d, 17)
ans =

Q1-99

Current Date and Time
The function date returns a string for today’s date:

date
ans =

02-Oct-1996

The function now returns the serial date number for the current date and time:

now
ans =

729300.71

datestr(now)
ans =

02-Oct-1996 16:56:16

datestr(floor(now))
ans =

02-Oct-1996

2-56

Dates and Times

Function Summary
MATLAB provides the following functions for time and date handling:

• Current Date and Time Functions on page 2-57

• Conversion Functions on page 2-57

• Utility Functions on page 2-57

• Timing Measurement Functions on page 2-58

Current Date and Time Functions

Function Description

clock Return the current date and time as a date vector.
date Return the current date as date string.
now Return the current date and time as serial date number.

Conversion Functions

Function Description

datenum Convert to a serial date number.
datestr Convert to a string representation of the date.
datevec Convert to a date vector.

Utility Functions

Function Description

addtodate Modify a date number by field.
calendar Return a matrix representing a calendar.
datetick Label axis tick lines with dates.
eomday Return the last day of a year and month.
weekday Return the current day of the week.

2-57

2 Basic Program Components

Timing Measurement Functions

Function Description

cputime Return the total CPU time used by MATLAB since it
was started.

etime Return the time elapsed between two date vectors.
tic, toc Measure the time elapsed between invoking tic and toc.

2-58

Regular Expressions

Regular Expressions

In this section...

“Overview” on page 2-59
“MATLAB Regular Expression Functions” on page 2-60
“Character Types” on page 2-61
“Character Representation” on page 2-65
“Grouping Operators” on page 2-66
“Nonmatching Operators” on page 2-68
“Positional Operators” on page 2-68
“Lookaround Operators” on page 2-69
“Quantifiers” on page 2-75
“Tokens” on page 2-78
“Named Capture” on page 2-83
“Conditional Expressions” on page 2-85
“Dynamic Regular Expressions” on page 2-88
“String Replacement” on page 2-97
“Handling Multiple Strings” on page 2-99
“Operator Summary” on page 2-102

Overview
A regular expression is a string of characters that defines a certain pattern.
You would normally use a regular expression in searching through text for
a group of words that matches this pattern, perhaps while parsing program
input, or while processing a block of text.

The string 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter
h (indicated by 'h?'), is then followed by the letter n, and ends with any
number of non-whitespace characters (indicated by '\w*'). This pattern
matches any of the following:

2-59

2 Basic Program Components

Jon, John, Jonathan, Johnny

The MATLAB software supports most of the operators, or metacharacters,
commonly used with regular expressions and provides several functions to
use in searching and replacing text with these expressions.

MATLAB Regular Expression Functions
Several MATLAB functions support searching and replacing characters using
regular expressions:

Function Description

regexp Match regular expression.
regexpi Match regular expression, ignoring case.
regexprep Replace string using regular expression.
regexptranslate Translate string into regular expression.

See the function reference pages to obtain more information on these
functions. For more information on how to use regular expressions in general,
consult a reference on that subject.

The regexp and regexpi functions return up to seven outputs in the order
shown in the reference page for regexp. You can select specific outputs
to be returned by using one or more of the following qualifiers with these
commands:

Qualifier Value Returned

'start' Starting index of each substring matching the
expression

'end' Ending index of each substring matching the expression
'tokenExtents' Starting and ending indices of each substring matching

a token in the expression
'match' Text of each substring matching the expression
'tokens' Text of each token captured

2-60

Regular Expressions

Qualifier Value Returned

'names' Name and text of each named token captured
'split' Treating each match as a delimiter, the text of each

substring between such delimiters.

There is an additional qualifier named 'once' that you can use to return
only the first match found.

Character Types
Tables and examples in this and other sections that follow show the operators
and syntax supported by the regexp, regexpi, and regexprep functions in
MATLAB. Expressions shown in the left column have special meaning and
match one or more characters according to the usage described in the right
column. Any character not having a special meaning, for example, any
alphabetic character, matches that same character literally. To force one of
the regular expression functions to interpret a sequence of characters literally
(rather than as an operator) use the regexptranslate function.

Character types represent either a specific set of characters (e.g., uppercase)
or a certain type of character (e.g., non-whitespace).

Operator Usage

. Any single character, including white space
[c1c2c3] Any character contained within the brackets: c1 or c2

or c3
[^c1c2c3] Any character not contained within the brackets:

anything but c1 or c2 or c3
[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [
\f\n\r\t\v]

\S Any non-whitespace character; equivalent to [^
\f\n\r\t\v]

2-61

2 Basic Program Components

Operator Usage

\w Any alphabetic, numeric, or underscore character.
For English character sets, this is equivalent to
[a-zA-Z_0-9].

\W Any character that is not alphabetic, numeric, or
underscore. For English character sets, this is
equivalent to [^a-zA-Z_0-9].

\d Any numeric digit; equivalent to [0-9]
\D Any nondigit character; equivalent to [^0-9]

The following examples demonstrate how to use the character classes listed
above. See the regexp reference page for help with syntax. Most of these
examples use the following string:

str = 'The rain in Spain falls mainly on the plain.';

Any Character — .
The . operator matches any single character, including white space.

Example 1 — Matching Any Character. Use the dot (.) operator to locate
sequences of five consecutive characters that end with 'ain'. The regular
expression used in this example is

expr = '..ain';

Find each occurrence of the expression expr within the input string str.
Return a vector of the indices at which any matches begin:

str = 'The rain in Spain falls mainly on the plain.';

startIndex = regexp(str, expr)
startIndex =

4 13 24 39

Here is the input string with the returned startIndex values shown below
it. Note that the dot operator not only matches the letters in the string, but
white-space characters as well:

2-62

Regular Expressions

The rain in Spain falls mainly on the plain.
| | | |
4 13 24 39

If you would prefer to have MATLAB return the text of the matching
substrings, use the 'match' qualifier in the command:

matchStr = regexp(str, expr, 'match')
matchStr =

' rain' 'Spain' ' main' 'plain'

Example 2 — Returning Strings Rather than Indices. Here is the same
example, this time specifying the command qualifier 'match'. In this case,
regexp returns the text of the matching strings rather than the starting index:

regexp(str, '..ain', 'match')
ans =

' rain' 'Spain' ' main' 'plain'

Selected Characters — [c1c2c3]
Use [c1c2c3] in an expression to match selected characters r, p, or m followed
by 'ain'. Specify two qualifiers this time, 'match' and 'start', along with
an output argument for each, mat and idx. This returns the matching strings
and the starting indices of those strings:

[mat idx] = regexp(str, '[rpm]ain', 'match', 'start')
mat =

'rain' 'pain' 'main'
idx =

5 14 25

2-63

2 Basic Program Components

Range of Characters — [c1 - c2]
Use [c1-c2] in an expression to find words that begin with a letter in the
range of A through Z:

[mat idx] = regexp(str, '[A-Z]\w*', 'match', 'start')
mat =

'The' 'Spain'
idx =

1 13

Word and White-Space Characters — \w, \s
Use \w and \s in an expression to find words that end with the letter n
followed by a white-space character. Add a new qualifier, 'end', to return
the str index that marks the end of each match:

[mat ix1 ix2] = regexp(str, '\w*n\s', 'match', 'start', 'end')
mat =

'rain ' 'in ' 'Spain ' 'on '
ix1 =

5 10 13 32
ix2 =

9 12 18 34

Numeric Digits — \d
Use \d to find numeric digits in the following string:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\d', 'match', 'start')
mat =

'1' '2' '3'
idx =

9 12 15

2-64

Regular Expressions

Character Representation
The following character combinations represent specific character and
numeric values.

Operator Usage

\a Alarm (beep)
\\ Backslash
\$ Dollar sign
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\oN or \o{N} Character of octal value N
\xN or \x{N} Character of hexadecimal value N
\char If a character has special meaning in a regular expression,

precede it with backslash (\) to match it literally.

Octal and Hexadecimal — \o, \x
Use \x and \o in an expression to find a comma (hex 2C) followed by a space
(octal 40) followed by the character 2:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\x2C\o{40}2', 'match', 'start')
mat =

', 2'
idx =

10

2-65

2 Basic Program Components

Grouping Operators
When you need to use one of the regular expression operators on a number of
consecutive elements in an expression, group these elements together with
one of the grouping operators and apply the operation to the entire group. For
example, this command matches a capital letter followed by a numeral and
then an optional space character. These elements have to occur at least two
times in succession for there to be a match. To apply the {2,} multiplier to
all three consecutive characters, you can first make a group of the characters
and then apply the (?:) quantifier to this group:

regexp('B5 A2 6F 63 R6 P4 B2 BC', '(?:[A-Z]\d\s?){2,}', 'match')
ans =

'B5 A2 ' 'R6 P4 B2 '

There are three types of explicit grouping operators that you can use when you
need to apply an operation to more than just one element in an expression.
Also in the grouping category is the alternative match (logical OR) operator,
|. This creates two or more groups of elements in the expression and applies
an operation to one of the groups.

Operator Usage

(expr) Group regular expressions and capture tokens.
(?:expr) Group regular expressions, but do not capture tokens.
(?>expr) Group atomically.
expr1|expr2 Match expression expr1 or expression expr2.

Grouping and Capture — (expr)
When you enclose an expression in parentheses, MATLAB not only treats all
of the enclosed elements as a group, but also captures a token from these
elements whenever a match with the input string is found. For an example of
how to use this, see “Using Tokens — Example 1” on page 2-80.

Grouping Only — (?:expr)
Use (?:expr) to group a non-vowel (consonant, numeric, whitespace,
punctuation, etc.) followed by a vowel in the palindrome pstr. Specify at least

2-66

Regular Expressions

two consecutive occurrences ({2,}) of this group. Return the starting and
ending indices of the matched substrings:

pstr = 'Marge lets Norah see Sharon''s telegram';
expr = '(?:[^aeiou][aeiou]){2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =

'Nora' 'haro' 'tele'
ix1 =

12 23 31
ix2 =

15 26 34

Remove the grouping, and the {2,} now applies only to [aeiou]. The
command is entirely different now as it looks for a non-vowel followed by at
least two consecutive vowels:

expr = '[^aeiou][aeiou]{2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =

'see'
ix1 =

18
ix2 =

20

Alternative Match — expr1|expr2
Use p1|p2 to pick out words in the string that start with let or tel:

regexpi(pstr, '(let|tel)\w+', 'match')
ans =

'lets' 'telegram'

2-67

2 Basic Program Components

Nonmatching Operators
The comment operator enables you to insert comments into your code to make
it more maintainable. The text of the comment is ignored by MATLAB when
matching against the input string.

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Including Comments — (?#expr)
Use (?#expr) to add a comment to this expression that matches capitalized
words in pstr. Comments are ignored in the process of finding a match:

regexp(pstr, '(?# Match words in caps)[A-Z]\w+', 'match')
ans =

'Marge' 'Norah' 'Sharon'

Positional Operators
Positional operators in an expression match parts of the input string not by
content, but by where they occur in the string (e.g., the first N characters in
the string).

Operator Usage

^expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.
\<expr Match expr when it occurs at the beginning of a

word.
expr\> Match expr when it occurs at the end of a word.
\<expr\> Match expr when it represents the entire word.

2-68

Regular Expressions

Start and End of String Match — ^expr, expr$
Use ^expr to match words starting with the letter m or M only when it begins
the string, and expr$ to match words ending with m or M only when it ends
the string:

regexpi(pstr, '^m\w*|\w*m$', 'match')
ans =

'Marge' 'telegram'

Start and End of Word Match — \<expr, expr\>
Use \<expr to match any words starting with n or N, or ending with e or E:

regexpi(pstr, '\<n\w*|\w*e\>', 'match')
ans =

'Marge' 'Norah' 'see'

Exact Word Match — \<expr\>
Use \<expr\> to match a word starting with an n or N and ending with an h
or H:

regexpi(pstr, '\<n\w*h\>', 'match')
ans =

'Norah'

Lookaround Operators
Lookaround operators tell MATLAB to look either ahead or behind the
current location in the string for a specified expression. If the expression is
found, MATLAB attempts to match a given pattern.

This table shows the four lookaround expressions: lookahead, negative
lookahead, lookbehind, and negative lookbehind.

Operator Usage

(?=expr) Look ahead from current position and test if expr
is found.

2-69

2 Basic Program Components

Operator Usage

(?!expr) Look ahead from current position and test if expr
is not found

(?<=expr) Look behind from current position and test if expr
is found.

(?<!expr) Look behind from current position and test if expr
is not found.

Lookaround operators do not change the current parsing location in the input
string. They are more of a condition that must be satisfied for a match to occur.

For example, the following command uses an expression that matches
alphabetic, numeric, or underscore characters (\w*) that meet the condition
that they look ahead to (i.e., are immediately followed by) the letters vision.
The resulting match includes only that part of the string that matches the
\w* operator; it does not include those characters that match the lookahead
expression (?=vision):

[s e] = regexp('telegraph television telephone', ...
'\w*(?=vision)', 'start', 'end')

s =
11

e =
14

If you repeat this command and match one character beyond the lookahead
expression, you can see that parsing of the input string resumes at the
letter v, thus demonstrating that matching the lookahead operator has not
consumed any characters in the string:

regexp('telegraph television telephone', ...
'\w*(?=vision).', 'match')

ans =
'telev'

Note You can also use lookaround operators to perform a logical AND of two
elements. See “Using Lookaround as a Logical Operator” on page 2-74.

2-70

Regular Expressions

Using the Lookahead Operator — expr(?=test)

Example 1 — Simple Lookahead Example. The first regexp statement
below finds all 3-character sequences that end with the letters ai. The second
statement, which uses lookahead operation, matches only single characters.
The (?=ai) in the expression serves only as a condition for the match; it is
not part of the match itself:

str = 'The rain in Spain falls mainly on the plain.';

% In this statement, 'ai' is part of the match.
regexp(str, '.ai', 'match')
ans =

'rai' 'pai' 'mai' 'lai'

% In this statement, 'ai' is a condition for match.
regexp(str, '.(?=ai)', 'match')
ans =

'r' 'p' 'm' 'l'

Repeat these two commands but, this time, also look for an additional
character that follows the ai sequence. Note that, in the second regexp
statement, parsing for the dot (.) that follows the (?=ai) lookahead begins
immediately after the match for the first dot, and not after the ai, as it does
in the first statement:

regexp(str, '.ai.', 'match')
ans =

'rain' 'pain' 'main' 'lain'

regexp(str, '.(?=ai).', 'match')
ans =

'ra' 'pa' 'ma' 'la'

Example 2 — Lookahead.

Look ahead to a file name (fileread.m), and return the name of the directory
in which it resides:

str = which('fileread')
str =

2-71

2 Basic Program Components

C:\Akernel\perfect\matlab\toolbox\matlab\iofun\fileread.m

regexp(str, '\w+(?=\\\w+\.[mp])', 'match')
ans =

'iofun'

Using the Negative Lookahead Operator — expr(?!test)

Example — Negative Lookbehind and Lookahead. Generate a series of
sequential numbers:

n = num2str(5:15)
n =

5 6 7 8 9 10 11 12 13 14 15

Use both the negative lookbehind and negative lookahead operators together
to precede only the single-digit numbers with zero:

regexprep(n, '(?<!\d)(\d)(?!\d)', '0$1')
ans =

05 06 07 08 09 10 11 12 13 14 15

Using the Lookbehind Operator — (?<=test)expr

Example 1 — Positive and Negative Lookbehind Operators. Using the
lookbehind operator, find the letter r that is preceded by the letter u:

str = 'Neural Network Toolbox';

startIndex = regexp(str, '(?<=u)r', 'start')
startIndex =

4

Using the negative lookbehind operator, find the letter r that is not preceded
by the letter u:

startIndex = regexp(str, '(?<!u)r', 'start')
startIndex =

13

2-72

Regular Expressions

Example 2 — Lookbehind. Return the names and 7-digit telephone
numbers for those people in the list that are in the 617 area code. The
lookbehind (?<=^617-) finds those lines that begin with the number 617:

phone_list = {...
'978-389-2457 Kevin'; '617-922-3091 Ruth'; ...
'781-147-1748 Alan'; '508-643-9648 George'; ...
'617-774-6642 Lisa'; '617-241-0275 Greg'; ...
'413-995-9114 Jason'; '781-276-0482 Victoria'};
len = length(phone_list);

ph617 = regexp(phone_list, '(?<=^617-).*', 'match');

for k=1:len
str = char(ph617{k});
if ~isempty(str), fprintf(' %s\n', str), end
end

MATLAB returns the three numbers that have a 617 area code:

922-3091 Ruth
774-6642 Lisa
241-0275 Greg

Using the Negative Lookbehind Operator— (?<!test)expr

Example — Negative Lookbehind. This example uses negative lookbehind
to find those tasks that are not labelled as Done or Pending, Create a list of
tasks, each with status information to the left:

tasks = {...
'ToDo 3892457'; 'Done 9223091'; ...
'Pending 1471748'; 'Maybe 7746642'; ...
'ToDo 2410275'; 'Pending 4723596'; ...
'ToDo 9959114'; 'Maybe 2760482'; ...
'ToDo 3080027'; 'Done 1221941'};
count = length(tasks);

2-73

2 Basic Program Components

The regular expression looks for those task numbers that do not have a Done
or Pending status. Note that you can use the or (|) operator in a lookaround
to check for more than one condition:

doNow = regexp(tasks, '(?<!^(Done|Pending).*)\d+', 'match');

Now print out the results:

disp 'The following tasks need attention:'
for k=1:count

s = char(doNow{k});
if ~isempty(s), fprintf(' %s\n', s), end

end

The output displays all but the Done and Pending tasks:

The following tasks need attention:
3892457
7746642
2410275
9959114
2760482
3080027

Using Lookaround as a Logical Operator
One way in which a lookahead operation can be useful is to perform a logical
AND between two conditions. This example initially attempts to locate all
lowercase consonants in a text string. The text string is the first 50 characters
of the M-file help for the normest function:

helptext = help('normest');
str = helptext(1:50)
str =
NORMEST Estimate the matrix 2-norm.

NORMEST(S

Merely searching for non-vowels ([^aeiouAEIOU]) does not return the
expected answer, as the output includes capital letters, space characters,
and punctuation:

2-74

Regular Expressions

c = regexp(str, '[^aeiouAEIOU]', 'match')
c =

Columns 1 through 12
' ' 'N' 'R' 'M' 'S' 'T' ' ' 's' 't' 'm' 't'

-- etc. --

Try this again, using a lookahead operator to create the following AND
condition:

(lowercase letter) AND (not a vowel).

This time, the result is correct:

c = regexp(str, '(?=[a-z])[^aeiou]', 'match')
c =

's' 't' 'm ' 't' 't' 'h' 'm' 't' 'r' 'x'
'n' 'r' 'm'

Note that when using a lookahead operator to perform an AND, you need to
place the match expression expr after the test expression test:

(?=test)expr or (?!test)expr

Quantifiers
With the quantifiers shown below, you can specify how many instances of an
element are to be matched. The basic quantifying operators are listed in
the first six rows of the table.

By default, MATLAB matches as much of an expression as possible. Using
the operators shown in the last two rows of the table, you can override this
default behavior. Specify these options by appending a + or ? immediately
following one of the six basic quantifying operators.

Operator Usage

expr{m,n} Must occur at least m times but no more than n times.
expr{m,} Must occur at least m times.
expr{n} Must match exactly n times. Equivalent to {n,n}.

2-75

2 Basic Program Components

Operator Usage

expr? Match the preceding element 0 times or 1 time. Equivalent
to {0,1}.

expr* Match the preceding element 0 or more times. Equivalent
to {0,}.

expr+ Match the preceding element 1 or more times. Equivalent
to {1,}.

q_expr+ Match as much of the quantified expression as possible, but
do not rescan any portions of the string if the initial match
fails. The term q_expr represents any of the expressions
shown in the top six rows of this table.

q_expr? Match only as much of the quantified expression as
necessary. The term q_expr represents any of the
expressions shown in the top six rows of this table. For an
example, see “Lazy Quantifiers — expr*?” on page 2-78,
below.

Zero or One — expr?
Use ? to make the HTML <code> and </code> tags optional in the string. The
first string, hstr1, contains one occurrence of each tag. Since the expression
uses ()? around the tags, one occurrence is a match:

hstr1 = '<td><code>%%</code>
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr1, expr, 'match')
ans =

'<code>%%</code>
'

The second string, hstr2, does not contain the code tags at all. Just the same,
the expression matches because ()? allows for zero occurrences of the tags:

hstr2 = '<td>%%
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr2, expr, 'match')
ans =

2-76

Regular Expressions

'%%
'

Zero or More — expr*
The first regexp command looks for at least one occurrence of
 and finds
it. The second command parses a different string for at least one
 and
fails. The third command uses * to parse the same line for zero or more line
breaks and this time succeeds.

hstr1 = '<p>This string has

line breaks</p>';
regexp(hstr1, '<p>.*(
).*</p>', 'match')
ans =

'<p>This string has

line breaks</p>';

hstr2 = '<p>This string has no line breaks</p>';
regexp(hstr2, '<p>.*(
).*</p>', 'match')
ans =

{}

regexp(hstr2, '<p>.*(
)*.*</p>', 'match')
ans =

'<p>This string has no line breaks</p>';

One or More — expr+
Use + to verify that the HTML image source is not empty. This looks for one
or more characters in the gif filename:

hstr = '';
expr = '<img src="\w+.gif';

regexp(hstr, expr, 'match')
ans =

'<img src="b_prev.gif'

2-77

2 Basic Program Components

Exact, Minimum, and Maximum Quantities — {min,max}
Use {m}, {m,}, and {m,n} to verify the href syntax used in HTML. This
statement requires the href to have at least one non-whitespace character,
followed by exactly one occurrence of .html, optionally followed by # and
five to eight digits:

hstr = '';
expr = '<a href="\w{1,}(\.html){1}(\#\d{5,8}){0,1}"';

regexp(hstr, expr, 'match')
ans =

'<a href="s13.html#18760"'

Lazy Quantifiers — expr*?
This example shows the difference between the default (greedy) quantifier
and the lazy quantifier (?). The first part of the example uses the default
quantifier to match all characters from the opening <tr to the ending </td:

hstr = '<tr valign=top><td>
</td>';
regexp(hstr, '</?t.*>', 'match')
ans =

'<tr valign=top><td>
</td>'

The second part uses the lazy quantifier to match the minimum number of
characters between <tr, <td, or </td tags:

regexp(hstr, '</?t.*?>', 'match')
ans =

'<tr valign=top>' '<td>' '</td>'

Tokens
Parentheses used in a regular expression not only group elements of that
expression together, but also designate any matches found for that group as
tokens. You can use tokens to match other parts of the same string. One
advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

This section covers

2-78

Regular Expressions

• “Operators Used with Tokens” on page 2-79

• “Introduction to Using Tokens” on page 2-79

• “Using Tokens — Example 1” on page 2-80

• “Using Tokens — Example 2” on page 2-81

• “Tokens That Are Not Matched” on page 2-82

• “Using Tokens in a Replacement String” on page 2-83

Operators Used with Tokens
Here are the operators you can use with tokens in MATLAB.

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

$N Insert the match for the Nth token in the replacement
string. Used only by the regexprep function. If N
is equal to zero, then insert the entire match in the
replacement string.

(?(N)s1|s2) If Nth token is found, then match s1, else match s2

Introduction to Using Tokens
You can turn any pattern being matched into a token by enclosing the pattern
in parentheses within the expression. For example, to create a token for
a dollar amount, you could use ’(\$\d+)’. Each token in the expression is
assigned a number, starting from 1, going from left to right. To make a
reference to a token later in the expression, refer to it using a backslash
followed by the token number. For example, when referencing a token
generated by the third set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters
in a string, you could capture the first letter as a token and then search for
a matching character immediately afterwards. In the expression shown

2-79

2 Basic Program Components

below, the (\S) phrase creates a token whenever regexp matches any
non-whitespace character in the string. The second part of the expression,
'\1', looks for a second instance of the same character immediately following
the first:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

[mat tok ext] = regexp(poestr, '(\S)\1', 'match', ...
'tokens', 'tokenExtents');

mat
mat =

'dd' 'pp' 'dd' 'pp'

The tokens returned in cell array tok are:

'd', 'p', 'd', 'p'

Starting and ending indices for each token in the input string poestr are:

11 11, 26 26, 35 35, 57 57

Using Tokens — Example 1
Here is an example of how tokens are assigned values. Suppose that you
are going to search the following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When
you finally perform the search, the following tokens are generated for each
match.

Match Token 1 Token 2

andy y

2-80

Regular Expressions

Match Token 1 Token 2

ted t d

andrew rew

andy y

ted t d

Only the highest level parentheses are used. For example, if the search
pattern and(y|rew) finds the text andrew, token 1 is assigned the value rew.
However, if the search pattern (and(y|rew)) is used, token 1 is assigned
the value andrew.

Using Tokens — Example 2
Use (expr) and \N to capture pairs of matching HTML tags (e.g., <a> and
<\a>) and the text between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

The first part of the expression, ’<(\w+)’, matches an opening bracket (<)
followed by one or more alphabetic, numeric, or underscore characters. The
enclosing parentheses capture token characters following the opening bracket.

The second part of the expression, ’.*?>.*?’, matches the remainder of this
HTML tag (characters up to the >), and any characters that may precede the
next opening bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This
tag is composed of the sequence </tag>, where tag is whatever characters
were captured as a token.

hstr = '<!comment>Default
';
expr = '<(\w+).*?>.*?</\1>';

[mat tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}
ans =

ans =

2-81

2 Basic Program Components

Default

tok{:}
ans =

'a'
ans =

'b'

Tokens That Are Not Matched
For those tokens specified in the regular expression that have no match in the
string being evaluated, regexp and regexpi return an empty string ('') as
the token output, and an extent that marks the position in the string where
the token was expected.

The example shown here executes regexp on the path string str returned
from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path string. The third specifier
[a-z]+ has no match in the string because this part of the path, Profiles,
begins with an uppercase letter:

str = tempdir
str =

C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = ['([A-Z]:)\\(WINNT)\\([a-z]+)?.*\\' ...
'([a-z]+)\\([A-Z]+~\d)\\(Temp)\\'];

[tok ext] = regexp(str, expr, 'tokens', 'tokenExtents');

When a token is not found in a string, MATLAB still returns a token string
and token extent. The returned token string is an empty character string
(''). The first number of the extent is the string index that marks where the
token was expected, and the second number of the extent is equal to one
less than the first.

In the case of this example, the empty token is the third specified in the
expression, so the third token string returned is empty:

tok{:}

2-82

Regular Expressions

ans =
'C:' 'WINNT' '' 'bpascal' 'LOCALS~1' 'Temp'

The third token extent returned in the variable ext has the starting index
set to 10, which is where the nonmatching substring, Profiles, begins in the
string. The ending extent index is set to one less than the starting index, or 9:

ext{:}
ans =

1 2
4 8

10 9
19 25
27 34
36 39

Using Tokens in a Replacement String
When using tokens in a replacement string, reference them using $1, $2, etc.
instead of \1, \2, etc. This example captures two tokens and reverses their
order. The first, $1, is 'Norma Jean' and the second, $2, is 'Baker'. Note
that regexprep returns the modified string, not a vector of starting indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')
ans =

Baker, Norma Jean

Named Capture
If you use a lot of tokens in your expressions, it may be helpful to assign them
names rather than having to keep track of which token number is assigned
to which token. Use the following operator to assign a name to a token that
finds a match.

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

\k<name> Match the token referred to by name.

2-83

2 Basic Program Components

Operator Usage

$<name> Insert the match for named token in a replacement
string. Used only with the regexprep function.

(?(name)s1|s2) If named token is found, then match s1; otherwise,
match s2

When referencing a named token within the expression, use the syntax
\k<name> instead of the numeric \1, \2, etc.:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

regexp(poestr, '(?<anychar>.)\k<anychar>', 'match')
ans =

'dd' 'pp' 'dd' 'pp'

Labeling Your Output
Named tokens can also be useful in labeling the output from the MATLAB
regular expression functions. This is especially true when you are processing
numerous strings.

This example parses different pieces of street addresses from several strings.
A short name is assigned to each token in the expression string:

str1 = '134 Main Street, Boulder, CO, 14923';
str2 = '26 Walnut Road, Topeka, KA, 25384';
str3 = '847 Industrial Drive, Elizabeth, NJ, 73548';

p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))';
p2 = '(?<city>[A-Z][a-z]+)';
p3 = '(?<state>[A-Z]{2})';
p4 = '(?<zip>\d{5})';

expr = [p1 ', ' p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to
work with by using named tokens:

2-84

Regular Expressions

loc1 = regexp(str1, expr, 'names')
loc1 =

adrs: '134 Main Street'
city: 'Boulder'

state: 'CO'
zip: '14923'

loc2 = regexp(str2, expr, 'names')
loc2 =

adrs: '26 Walnut Road'
city: 'Topeka'

state: 'KA'
zip: '25384'

loc3 = regexp(str3, expr, 'names')
loc3 =

adrs: '847 Industrial Drive'
city: 'Elizabeth'

state: 'NJ'
zip: '73548'

Conditional Expressions
With conditional expressions, you can tell MATLAB to match an expression
only if a certain condition is true. A conditional expression is similar to an
if-then or an if-then-else clause in programming. MATLAB first tests the
state of a given condition, and the outcome of this tests determines what, if
anything, is to be matched next. The following table shows the two conditional
syntaxes you can use with MATLAB.

Operator Usage

(?(cond)expr) If condition cond is true, then match expression
expr

(?(cond)expr1|expr2) If condition cond is true, then match expression
expr1. Otherwise match expression expr2

The first entry in this table is the same as an if-then statement. MATLAB
tests the state of condition cond and then matches expression expr only if

2-85

2 Basic Program Components

the condition was found to be true. In the form of an if-then statement, it
would look like this:

if cond then expr

The second entry in the table is the same as an if-then-else statement.
If the condition is true, MATLAB matches expr1; if false, it matches expr2
instead. This syntax is equivalent to the following programming statement:

if cond then expr1 else expr2

The condition cond in either of these syntaxes can be any one of the following:

• A specific token, identified by either number or name, is located in the
input string. See “Conditions Based on Tokens” on page 2-86, below.

• A lookaround operation results in a match. See “Conditions Based on a
Lookaround Match” on page 2-87, below.

• A dynamic expression of the form (?@cmd) returns a nonzero numeric
value. See “Conditions Based on Return Values” on page 2-88, below.

Conditions Based on Tokens
In a conditional expression, MATLAB matches the expression only if the
condition associated with it is met. If the condition is based on a token,
then the condition is met if MATLAB matches more than one character for
the token in the input string.

To specify a token in a condition, use either the token number or, for tokens
that you have assigned a name to, its name. Token numbers are determined
by the order in which they appear in an expression. For example, if you
specify three tokens in an expression (that is, if you enclose three parts of
the expression in parentheses), then you would refer to these tokens in a
condition statement as 1, 2, and 3.

The following example uses the conditional statement (?(1)her|his) to
match the string regardless of the gender used. You could translate this into
the phrase, “if token 1 is found (i.e., Mr is followed by the letter s), then
match her, else match his:

expr = 'Mr(s?)\..*?(?(1)her|his) son';

2-86

Regular Expressions

[mat tok] = regexp('Mr. Clark went to see his son', ...
expr, 'match', 'tokens')

mat =
'Mr. Clark went to see his son'

tok =
{1x2 cell}

tok{:}
ans =

'' 'his'

In the second part of the example, the token s is found and MATLAB matches
the word her:

[mat tok] = regexp('Mrs. Clark went to see her son', ...
expr, 'match', 'tokens')
mat =

'Mrs. Clark went to see her son'
tok =

{1x2 cell}

tok{:}
ans =

's' 'her'

Note When referring to a token within a condition, use just the number of
the token. For example, refer to token 2 by using the number 2 alone, and
not \2 or $2.

Conditions Based on a Lookaround Match
Lookaround statements look for text that either precedes or follows an
expression. If this lookaround text is located, then MATLAB proceeds to
match the expression. You can also use lookarounds in conditional statements.
In this case, if the lookaround text is located, then MATLAB considers the
condition to be met and matches the associated expression. If the condition is
not met, then MATLAB matches the else part of the expression.

2-87

2 Basic Program Components

Conditions Based on Return Values
MATLAB supports different types of dynamic expressions. One type of
dynamic expression, having the form (?@cmd), enables you to execute a
MATLAB command (shown here as cmd) while matching an expression.
You can use this type of dynamic expression in a conditional statement if
the command in the expression returns a numeric value. The condition is
considered to be met if the return value is nonzero.

Dynamic Regular Expressions
In a dynamic expression, you can make the pattern that you want regexp to
match dependent on the content of the input string. In this way, you can
more closely match varying input patterns in the string being parsed. You
can also use dynamic expressions in replacement strings for use with the
regexprep function. This gives you the ability to adapt the replacement text
to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

regexp(string, match_expr)
regexpi(string, match_expr)
regexprep(string, match_expr, replace_expr)

MATLAB supports three types of dynamic operators for use in a match
expression. See “Dynamic Operators for the Match Expression” on page 2-90
for more information.

Operator Usage

(??expr) Parse expr as a separate regular expression, and include the
resulting string in the match expression. This gives you the
same results as if you called regexprep inside of a regexp
match expression.

2-88

Regular Expressions

Operator Usage

(?@cmd) Execute the MATLAB command cmd, discarding any output
that may be returned. This is often used for diagnosing a
regular expression.

(??@cmd) Execute the MATLAB command cmd, and include the string
returned by cmd in the match expression. This is a combination
of the two dynamic syntaxes shown above: (??expr) and
(?@cmd).

MATLAB supports one type of dynamic expression for use in the replacement
expression of a regexprep command. See “Dynamic Operators for the
Replacement Expression” on page 2-95 for more information.

Operator Usage

${cmd} Execute the MATLAB command cmd, and include the string
returned by cmd in the replacement expression.

Example of a Dynamic Expression
As an example of a dynamic expression, the following regexprep command
correctly replaces the term internationalization with its abbreviated form,
i18n. However, to use it on a different term such as globalization, you have
to use a different replacement expression:

match_expr = '(^\w)(\w*)(\w$)';

replace_expr1 = '$118$3';
regexprep('internationalization', match_expr, replace_expr1)
ans =

i18n

replace_expr2 = '$111$3';
regexprep('globalization', match_expr, replace_expr2)
ans =

g11n

Using a dynamic expression ${num2str(length($2))} enables you to base
the replacement expression on the input string so that you do not have to

2-89

2 Basic Program Components

change the expression each time. This example uses the dynamic syntax
${cmd} from the second table shown above:

match_expr = '(^\w)(\w*)(\w$)';
replace_expr = '1{num2str(length($2))}$3';

regexprep('internationalization', match_expr, replace_expr)
ans =

i18n

regexprep('globalization', match_expr, replace_expr)
ans =

g11n

Dynamic Operators for the Match Expression
There are three types of dynamic expressions you can use when composing
a match expression:

• “Dynamic Expressions that Modify the Match Expression — (??expr)” on
page 2-91

“Dynamic Commands that Modify the Match Expression — (??@cmd)” on
page 2-91

“Dynamic Commands that Serve a Functional Purpose — (?@cmd)” on
page 2-92

The first two of these actually modify the match expression itself so that it can
be made specific to changes in the contents of the input string. When MATLAB
evaluates one of these dynamic statements, the results of that evaluation are
included in the same location within the overall match expression.

The third operator listed here does not modify the overall expression, but
instead enables you to run MATLAB commands during the parsing of a
regular expression. This functionality can be useful in diagnosing your
regular expressions.

2-90

Regular Expressions

Dynamic Expressions that Modify the Match Expression — (??expr).
The (??expr) operator parses expression expr, and inserts the results back
into the match expression. MATLAB then evaluates the modified match
expression.

Here is an example of the type of expression that you can use with this
operator:

str = {'5XXXXX', '8XXXXXXXX', '1X'};
regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')

The purpose of this particular command is to locate a series of X characters
in each of the strings stored in the input cell array. Note however that the
number of Xs varies in each string. If the count did not vary, you could use the
expression X{n} to indicate that you want to match n of these characters. But,
a constant value of n does not work in this case.

The solution used here is to capture the leading count number (e.g., the 5 in
the first string of the cell array) in a token, and then to use that count in a
dynamic expression. The dynamic expression in this example is (??X{$1}),
where $1 is the value captured by the token \d+. The operator {$1} makes a
quantifier of that token value. Because the expression is dynamic, the same
pattern works on all three of the input strings in the cell array. With the first
input string, regexp looks for five X characters; with the second, it looks for
eight, and with the third, it looks for just one:

regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')
ans =

'5XXXXX' '8XXXXXXXX' '1X'

Dynamic Commands that Modify the Match Expression — (??@cmd).
MATLAB uses the (??@function) operator to include the results of a
MATLAB command in the match expression. This command must return a
string that can be used within the match expression.

The regexp command below uses the dynamic expression (??@flilplr($1))
to locate a palindrome string, “Never Odd or Even”, that has been embedded
into a larger string:

regexp(pstr, '(.{3,}).?(??@fliplr($1))', 'match')

2-91

2 Basic Program Components

The dynamic expression reverses the order of the letters that make up the
string, and then attempts to match as much of the reversed-order string as
possible. This requires a dynamic expression because the value for $1 relies
on the value of the token (.{3,}):

% Put the string in lowercase.
str = lower(...

'Find the palindrome Never Odd or Even in this string');

% Remove all nonword characters.
str = regexprep(str, '\W*', '')
str =

findthepalindromeneveroddoreveninthisstring

% Now locate the palindrome within the string.
palstr = regexp(str, '(.{3,}).?(??@fliplr($1))', 'match')
str =

'neveroddoreven'

Dynamic expressions in MATLAB have access to the currently active
workspace. This means that you can change any of the functions or variables
used in a dynamic expression just by changing variables in the workspace.
Repeat the last command of the example above, but this time define the
function to be called within the expression using a function handle stored in
the base workspace:

fun = @fliplr;

palstr = regexp(str, '(.{3,}).?(??@fun($1))', 'match')
palstr =

'neveroddoreven'

Dynamic Commands that Serve a Functional Purpose — (?@cmd). The
(?@cmd) operator specifies a MATLAB command that regexp or regexprep
is to run while parsing the overall match expression. Unlike the other
dynamic expressions in MATLAB, this operator does not alter the contents
of the expression it is used in. Instead, you can use this functionality to get
MATLAB to report just what steps it’s taking as it parses the contents of one
of your regular expressions.

2-92

Regular Expressions

The following example parses a word for zero or more characters followed by
two identical characters followed again by zero or more characters:

regexp('mississippi', '\w*(\w)\1\w*', 'match')
ans =

'mississippi'

To track the exact steps that MATLAB takes in determining the match, the
example inserts a short script (?@disp($1)) in the expression to display the
characters that finally constitute the match. Because the example uses greedy
quantifiers, MATLAB attempts to match as much of the string as possible.
So, even though MATLAB finds a match toward the beginning of the string,
it continues to look for more matches until it arrives at the very end of the
string. From there, it backs up through the letters i then p and the next p,
stopping at that point because the match is finally satisfied:

regexp('mississippi', '\w*(\w)(?@disp($1))\1\w*');
i
p
p

Now try the same example again, this time making the first quantifier lazy
(*?). Again, MATLAB makes the same match:

regexp('mississippi', '\w*?(\w)\1\w*', 'match')
ans =

'mississippi'

But by inserting a dynamic script, you can see that this time, MATLAB has
matched the string quite differently. In this case, MATLAB uses the very first
match it can find, and does not even consider the rest of the string:

regexp('mississippi', '\w*?(\w)(?@disp($1))\1\w*';)
m
i
s

To demonstrate how versatile this type of dynamic expression can be, consider
the next example that progressively assembles a cell array as MATLAB
iteratively parses the input string. The (?!) operator found at the end of the
expression is actually an empty lookahead operator, and forces a failure at

2-93

2 Basic Program Components

each iteration. This forced failure is necessary if you want to trace the steps
that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input string, each time
trying another combination of letters to see if a fit better than last match can
be found. On any passes in which no matches are found, the test results in
an empty string. The dynamic script (?@if(~isempty($&))) serves to omit
these strings from the matches cell array:

matches = {};
expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)),' ...

'matches{end+1}=$&;end)(?!)'];

regexp('Euler Cauchy Boole', expr);

matches
matches =

'Euler Cauchy Boole' 'Euler Cauchy ' 'Euler '
'Cauchy Boole' 'Cauchy ' 'Boole'

The operators $& (or the equivalent $0), $`, and $' refer to that part of the
input string that is currently a match, all characters that precede the current
match, and all characters to follow the current match, respectively. These
operators are sometimes useful when working with dynamic expressions,
particularly those that employ the (?@cmd) operator.

This example parses the input string looking for the letter g. At each iteration
through the string, regexp compares the current character with g, and not
finding it, advances to the next character. The example tracks the progress of
scan through the string by marking the current location being parsed with a
^ character.

(The $` and $· operators capture that part of the string that precedes and
follows the current parsing location. You need two single-quotation marks
($'') to express the sequence $· when it appears within a string.)

str = 'abcdefghij';
expr = '(?@disp(sprintf(''starting match: [%s^%s]'',$`,$'')))g';

regexp(str, expr, 'once');

2-94

Regular Expressions

starting match: [^abcdefghij]
starting match: [a^bcdefghij]
starting match: [ab^cdefghij]
starting match: [abc^defghij]
starting match: [abcd^efghij]
starting match: [abcde^fghij]
starting match: [abcdef^ghij]

Dynamic Operators for the Replacement Expression
The three types of dynamic expressions discussed above can be used only
in the match expression (second input) argument of the regular expression
functions. MATLAB provides one more type of dynamic expression; this one
is for use in a replacement string (third input) argument of the regexprep
function.

Dynamic Commands that Modify the Replacement Expression —
${cmd}. The ${cmd} operator modifies the contents of a regular expression
replacement string, making this string adaptable to parameters in the
input string that might vary from one use to the next. As with the other
dynamic expressions used in MATLAB, you can include any number of these
expressions within the overall replacement expression.

In the regexprep call shown here, the replacement string is
'${convert($1,$2)}'. In this case, the entire replacement string is a
dynamic expression:

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

The dynamic expression tells MATLAB to execute an M-file function named
convert using the two tokens (\d+\.?\d*) and (\w+), derived from the
string being matched, as input arguments in the call to convert. The
replacement string requires a dynamic expression because the values of $1
and $2 are generated at runtime.

The following example defines the M-file named convert that converts
measurements from imperial units to metric. To convert values from the
string being parsed, regexprep calls the convert function, passing in values
for the quantity to be converted and name of the imperial unit:

2-95

2 Basic Program Components

function valout = convert(valin, units)
switch(units)

case 'inches'
fun = @(in)in .* 2.54; uout = 'centimeters';

case 'miles'
fun = @(mi)mi .* 1.6093; uout = 'kilometers';

case 'pounds'
fun = @(lb)lb .* 0.4536; uout = 'kilograms';

case 'pints'
fun = @(pt)pt .* 0.4731; uout = 'litres';

case 'ounces'
fun = @(oz)oz .* 28.35; uout = 'grams';

end
val = fun(str2num(valin));
valout = [num2str(val) ' ' uout];

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This highway is 201.1625 kilometers long

regexprep('This pitcher holds 2.5 pints of water', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This pitcher holds 1.1828 litres of water

regexprep('This stone weighs about 10 pounds', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This stone weighs about 4.536 kilograms

As with the (??@) operator discussed in an earlier section, the ${ } operator
has access to variables in the currently active workspace. The following
regexprep command uses the array A defined in the base workspace:

A = magic(3)
A =

2-96

Regular Expressions

8 1 6
3 5 7
4 9 2

regexprep('The columns of matrix _nam are _val', ...
{'_nam', '_val'}, ...
{'A', '${sprintf(''%d%d%d '', A)}'})

ans =
The columns of matrix A are 834 159 672

String Replacement
The regexprep function enables you to replace a string that is identified
by a regular expression with another string. The following syntax replaces
all occurrences of the regular expression expr in string str with the string
repstr. The new string is returned in s. If no matches are found, return
string s is the same as input string str.

s = regexprep('str', 'expr', 'repstr')

The replacement string can include any ordinary characters and also any of
the operators shown in the following table:

Operator Usage

Operators from Character
Representation on page 2-103
table

The character represented by the
operator sequence

$` That part of the input string that
precedes the current match

$& or $0 That part of the input string that is
currently a match

$· That part of the input string that
follows the current match. In
MATLAB, use $'' to represent the
character sequence $·.

$N The string represented by the token
identified by name

2-97

2 Basic Program Components

Operator Usage

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB
executes the command cmd

You can capture parts of the input string as tokens and then reuse them in
the replacement string. Specify the parts of the string to capture using the
token capture operator (...). Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and Nth
tokens captured. (See the section on “Tokens” on page 2-78 and the example
“Using Tokens in a Replacement String” on page 2-83 in this documentation
for information on using tokens.)

Note When referring to a token within a replacement string, use the number
of the token preceded by a dollar sign. For example, refer to token 2 by using
$2, and not 2 or \2.

The following example uses both the ${cmd} and $N operators in the
replacement strings of nested regexprep commands to capitalize the first
letter of each sentence. The inner regexprep looks for the start of the entire
string and capitalizes the single instance; the outer regexprep looks for the
first letter following a period and capitalizes the two instances:

s1 = 'here are a few sentences.';

s2 = 'none are capitalized.';

s3 = 'let''s change that.';

str = [s1 ' ' s2 ' ' s3]

regexprep(regexprep(str, '(^.)', '${upper($1)}'), ...

'(?<=\.\s*)([a-z])','${upper($1)}')

ans =

Here are a few sentences. None are capitalized. Let's change that.

2-98

Regular Expressions

Make regexprep more specific to your needs by specifying any of a number
of options with the command. See the regexprep reference page for more
information on these options.

Handling Multiple Strings
You can use any of the MATLAB regular expression functions with cell arrays
of strings as well as with single strings. Any or all of the input parameters
(the string, expression, or replacement string) can be a cell array of strings.
The regexp function requires that the string and expression arrays have
the same number of elements. The regexprep function requires that the
expression and replacement arrays have the same number of elements. (The
cell arrays do not have to have the same shape.)

Whenever either input argument in a call to regexp, or the first input
argument in a call to regexprep function is a cell array, all output values are
cell arrays of the same size.

This section covers the following topics:

• “Finding a Single Pattern in Multiple Strings” on page 2-99

• “Finding Multiple Patterns in Multiple Strings” on page 2-100

• “Replacing Multiple Strings” on page 2-101

Finding a Single Pattern in Multiple Strings
The example shown here uses the regexp function on a cell array of strings
cstr. It searches each string of the cell array for consecutive matching letters
(e.g., 'oo'). The function returns a cell array of the same size as the input
array. Each row of the return array contains the indices for which there was a
match against the input cell array.

Here is the input cell array:

cstr = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

2-99

2 Basic Program Components

Find consecutive matching letters by capturing a letter as a token (.) and
then repeating that letter as a token reference, \1:

idx = regexp(cstr, '(.)\1');

whos idx
Name Size Bytes Class

idx 4x1 296 cell array

idx{:}
ans = % 'Whose woods these are I think I know.'

8 % |8

ans = % 'His house is in the village though;'
23 % |23

ans = % 'He will not see me stopping here'
6 14 23 % |6 |14 |23

ans = % 'To watch his woods fill up with snow.'
15 22 % |15 |22

To return substrings instead of indices, use the 'match' parameter:

mat = regexp(cstr, '(.)\1', 'match');
mat{3}
ans =

'll' 'ee' 'pp'

Finding Multiple Patterns in Multiple Strings
This example uses a cell array of strings in both the input string and the
expression. The two cell arrays are of different shapes: cstr is 4-by-1 while
expr is 1-by-4. The command is valid as long as they both have the same
number of cells.

Find uppercase or lowercase 'i' followed by a white-space character in
str{1}, the sequence 'hou' in str{2}, two consecutive matching letters in
str{3}, and words beginning with 'w' followed by a vowel in str{4}.

2-100

Regular Expressions

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
idx = regexpi(cstr, expr);

idx{:}
ans = % 'Whose woods these are I think I know.'

23 31 % |23 |31

ans = % 'His house is in the village though;'
5 30 % |5 |30

ans = % 'He will not see me stopping here'
6 14 23 % |6 |14 |23

ans = % 'To watch his woods fill up with snow.'
4 14 28 % |4 |14 |28

Note that the returned cell array has the dimensions of the input string,
cstr. The dimensions of the return value are always derived from the input
string, whenever the input string is a cell array. If the input string is not a
cell array, then it is the dimensions of the expression that determine the
shape of the return array.

Replacing Multiple Strings
When replacing multiple strings with regexprep, use a single replacement
string if the expression consists of a single string. This example uses a
common replacement value ('--') for all matches found in the multiple string
input cstr. The function returns a cell array of strings having the same
dimensions as the input cell array:

s = regexprep(cstr, '(.)\1', '--', 'ignorecase')
s =

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'
'To watch his w--ds fi-- up with snow.'

You can use multiple replacement strings if the expression consists of
multiple strings. In this example, the input string and replacement string
are both 4-by-1 cell arrays, and the expression is a 1-by-4 cell array. As
long as the expression and replacement arrays contain the same number of

2-101

2 Basic Program Components

elements, the statement is valid. The dimensions of the return value match
the dimensions of the input string:

expr = {'i\s', 'hou', '(.)\1', '\<w[aeiou]'};
repl = {'-1-'; '-2-'; '-3-'; '-4-'};

s = regexprep(cstr, expr, repl, 'ignorecase')
s =

'Whose w-3-ds these are -1-think -1-know.'
'His -2-se is in the vi-3-age t-2-gh;'
'He -4--3- not s-3- me sto-3-ing here'
'To -4-tch his w-3-ds fi-3- up -4-th snow.'

Operator Summary
MATLAB provides these operators for working with regular expressions:

• Character Types on page 2-102

• Character Representation on page 2-103

• “Grouping Operators” on page 2-66

• “Nonmatching Operators” on page 2-68

• “Positional Operators” on page 2-68

• Lookaround Operators on page 2-105

• Quantifiers on page 2-105

• Ordinal Token Operators on page 2-106

• Named Token Operators on page 2-106

• Conditional Expression Operators on page 2-107

• Dynamic Expression Operators on page 2-107

• Replacement String Operators on page 2-108

Character Types

Operator Usage

. Any single character, including white space

2-102

Regular Expressions

Character Types (Continued)

Operator Usage

[c1c2c3] Any character contained within the brackets: c1 or c2
or c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [
\f\n\r\t\v]

\S Any non-whitespace character; equivalent to
[^ \f\n\r\t\v]

\w Any alphabetic, numeric, or underscore character.
For English character sets, this is equivalent to
[a-zA-Z_0-9].

\W Any character that is not alphabetic, numeric, or
underscore. For English character sets, this is
equivalent to [^a-zA-Z_0-9].

\d Any numeric digit; equivalent to [0-9]
\D Any nondigit character; equivalent to [^0-9]
\oN or \o{N} Character of octal value N
\xN or \x{N} Character of hexadecimal value N

Character Representation

Operator Usage

\\ Backslash
\$ Dollar sign
\a Alarm (beep)
\b Backspace
\f Form feed

2-103

2 Basic Program Components

Character Representation (Continued)

Operator Usage

\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\char If a character has special meaning in a regular

expression, precede it with backslash (\) to match it
literally.

Grouping Operators

Operator Usage

(expr) Group regular expressions and capture tokens.
(?:expr) Group regular expressions, but do not capture tokens.
(?>expr) Group atomically.
expr1|expr2 Match expression expr1 or expression expr2.

Nonmatching Operators

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Positional Operators

Operator Usage

^expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.

2-104

Regular Expressions

Positional Operators (Continued)

Operator Usage

\<expr Match expr when it occurs at the beginning of a
word.

expr\> Match expr when it occurs at the end of a word.
\<expr\> Match expr when it represents the entire word.

Lookaround Operators

Operator Usage

(?=expr) Look ahead from current position and test if expr
is found.

(?!expr) Look ahead from current position and test if expr
is not found

(?<=expr) Look behind from current position and test if expr
is found.

(?<!expr) Look behind from current position and test if expr
is not found.

Quantifiers

Operator Usage

expr{m,n} Match expr when it occurs at least m times but no more
than n times consecutively.

expr{m,} Match exprwhen it occurs at least m times consecutively.
expr{n} Match exprwhen it occurs exactly n times consecutively.

Equivalent to {n,n}.
expr? Match expr when it occurs 0 times or 1 time. Equivalent

to {0,1}.
expr* Match expr when it occurs 0 or more times

consecutively. Equivalent to {0,}.

2-105

2 Basic Program Components

Quantifiers (Continued)

Operator Usage

expr+ Match expr when it occurs 1 or more times
consecutively. Equivalent to {1,}.

q_expr* Match as much of the quantified expression as possible,
where q_expr represents any of the expressions shown
in the first six rows of this table.

q_expr+ Match as much of the quantified expression as possible,
but do not rescan any portions of the string if the initial
match fails.

q_expr? Match only as much of the quantified expression as
necessary.

Ordinal Token Operators

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

$N Insert the match for the Nth token in the replacement
string. Used only by the regexprep function. If N
is equal to zero, then insert the entire match in the
replacement string.

(?(N)s1|s2) If Nth token is found, then match s1, else match s2

Named Token Operators

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

2-106

Regular Expressions

Named Token Operators (Continued)

Operator Usage

\k<name> Match the token referred to by name.
$<name> Insert the match for named token in a replacement

string. Used only with the regexprep function.
(?(name)s1|s2) If named token is found, then match s1; otherwise,

match s2

Conditional Expression Operators

Operator Usage

(?(cond)expr) If condition cond is true, then match expression
expr

(?(cond)expr1|expr2) If condition cond is true, then match expression
expr1. Otherwise match expression expr2

Dynamic Expression Operators

Operator Usage

(??expr) Parse expr as a separate regular expression, and
include the resulting string in the match expression.
This gives you the same results as if you called
regexprep inside of a regexp match expression.

(??@cmd) Execute the MATLAB command cmd, discarding any
output that may be returned. This is often used for
diagnosing a regular expression.

(?@cmd) Execute the MATLAB command cmd, and include the
string returned by cmd in the match expression. This
is a combination of the two dynamic syntaxes shown
above: (??expr) and (?@cmd).

${cmd} Execute the MATLAB command cmd, and include the
string returned by cmd in the replacement expression.

2-107

2 Basic Program Components

Replacement String Operators

Operator Usage

Operators from Character
Representation on page 2-103
table

The character represented by the
operator sequence

$` That part of the input string that
precedes the current match

$& or $0 That part of the input string that is
currently a match

$· That part of the input string that
follows the current match. In
MATLAB, use $'' to represent the
character sequence $·.

$N The string represented by the token
identified by name

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB
executes the command cmd

2-108

Symbol Reference

Symbol Reference

In this section...

“Asterisk — *” on page 2-109
“At — @” on page 2-110
“Colon — :” on page 2-111
“Comma — ,” on page 2-112
“Curly Braces — { }” on page 2-113
“Dot — .” on page 2-113
“Dot-Dot — ..” on page 2-114
“Dot-Dot-Dot (Ellipsis) — ...” on page 2-114
“Dot-Parentheses — .()” on page 2-115
“Exclamation Point — !” on page 2-116
“Parentheses — ()” on page 2-116
“Percent — %” on page 2-116
“Percent-Brace — %{ %}” on page 2-117
“Semicolon — ;” on page 2-117
“Single Quotes — ’ ’” on page 2-118
“Space Character” on page 2-119
“Slash and Backslash — / \” on page 2-119
“Square Brackets — []” on page 2-120

This section does not include symbols used in arithmetic, relational, and
logical operations. For a description of these symbols, see the top of the list.
“Functions — Alphabetical List“ in the MATLAB Help browser.

Asterisk — *
An asterisk in a filename specification is used as a wildcard specifier, as
described below.

2-109

2 Basic Program Components

Filename Wildcard
Wildcards are generally used in file operations that act on multiple files or
directories. They usually appear in the string containing the file or directory
specification. MATLAB matches all characters in the name exactly except for
the wildcard character *, which can match any one or more characters.

To locate all files with names that start with 'january_' and have a mat
file extension, use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get
information on all variables with names starting with 'image' and ending
with 'Offset', use

whos image*Offset

At — @
The @ sign signifies either a function handle constructor or a directory that
supports a MATLAB class.

Function Handle Constructor
The @ operator forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign.

Function Handles in General. Function handles are commonly used in
passing functions as arguments to other functions. Construct a function
handle by preceding the function name with an @ sign:

fhandle = @myfun

You can read more about function handles in “Function Handles” on page
1-126.

Handles to Anonymous Functions. Anonymous functions give you a quick
means of creating simple functions without having to create M-files each
time. You can construct an anonymous function and a handle to that function
using the syntax

2-110

Symbol Reference

fhandle = @(arglist) body

where body defines the body of the function and arglist is the list of
arguments you can pass to the function.

See “Anonymous Functions” on page 4-3 for more information.

Class Directory Designator
A MATLAB class directory contains source files that define the methods and
properties of a class. All MATLAB class directory names must begin with
an @ sign:

\@myclass\get.m

See the documentation on MATLAB Classes for more information.

Colon — :
The colon operator generates a sequence of numbers that you can use in
creating or indexing into arrays. See“Generating a Numeric Sequence” for
more information on using the colon operator.

Numeric Sequence Range
Generate a sequential series of regularly spaced numbers from first to last
using the syntax first:last. For an incremental sequence from 6 to 17, use

N = 6:17

Numeric Sequence Step
Generate a sequential series of numbers, each number separated by a step
value, using the syntax first:step:last. For a sequence from 2 through 38,
stepping by 4 between each entry, use

N = 2:4:38

2-111

2 Basic Program Components

Indexing Range Specifier
Index into multiple rows or columns of a matrix using the colon operator
to specify a range of indices:

B = A(7, 1:5); % Read columns 1-5 of row 7.
B = A(4:2:8, 1:5); % Read columns 1-5 of rows 4, 6, and 8.
B = A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector
Convert a matrix or array to a column vector using the colon operator as a
single index:

A = rand(3,4);
B = A(:);

Preserving Array Shape on Assignment
Using the colon operator on the left side of an assignment statement, you can
assign new values to array elements without changing the shape of the array:

A = rand(3,4);
A(:) = 1:12;

Comma — ,
A comma is used to separate the following types of elements.

Row Element Separator
When constructing an array, use a comma to separate elements that belong
in the same row:

A = [5.92, 8.13, 3.53]

Array Index Separator
When indexing into an array, use a comma to separate the indices into each
dimension:

2-112

Symbol Reference

X = A(2, 7, 4)

Function Input and Output Separator
When calling a function, use a comma to separate output and input
arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator
To enter more than one MATLAB command or statement on the same line,
separate each command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — { }
Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor
To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing
Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

See the documentation on Cell Arrays for more information.

Dot — .
The single dot operator has the following different uses in MATLAB.

2-113

2 Basic Program Components

Structure Field Definition
Add fields to a MATLAB structure by following the structure name with a
dot and then a field name:

funds(5,2).bondtype = 'Corporate';

See the documentation on “Structures” on page 1-70 for more information.

Object Method Specifier
Specify the properties of an instance of a MATLAB class using the object
name followed by a dot, and then the property name:

val = asset.current_value

See “Defining Your Own Classes” on page 1-165 for more information.

Dot-Dot — ..
Two dots in sequence refer to the parent of the current directory.

Parent Directory
Specify the directory immediately above your current directory using two
dots. For example, to go up two levels in the directory tree and down into
the testdir directory, use

cd ..\..\testdir

Dot-Dot-Dot (Ellipsis) — ...
A series of three consecutive periods (...) is the line continuation operator in
MATLAB. This is often referred to as an ellipsis, but it should be noted that
the line continuation operator is a three-character operator and is different
from the single-character ellipsis represented in ASCII by the hexadecimal
number 2026.

Line Continuation
Continue any MATLAB command or expression by placing an ellipsis at the
end of the line to be continued:

2-114

Symbol Reference

sprintf('The current value of %s is %d', ...
vname, value)

Entering Long Strings. You cannot use an ellipsis within single quotes
to continue a string to the next line:

string = 'This is not allowed and will generate an ...
error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter
strings using either the concatenation operator ([]) or the sprintf function.

Here are two examples:

quote1 = [
'Tiger, tiger, burning bright in the forests of the night,' ...
'what immortal hand or eye could frame thy fearful symmetry?'];

quote2 = sprintf('%s%s%s', ...
'In Xanadu did Kubla Khan a stately pleasure-dome decree,', ...
'where Alph, the sacred river, ran ', ...
'through caverns measureless to man down to a sunless sea.');

Dot-Parentheses — .()
Use dot-parentheses to specify the name of a dynamic structure field.

Dynamic Structure Fields
Sometimes it is useful to reference structures with field names that can
vary. For example, the referenced field might be passed as an argument to a
function. Dynamic field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:

type = funds(5,2).(fundtype);

See on page 80 for more information.

2-115

2 Basic Program Components

Exclamation Point — !
The exclamation point precedes operating system commands that you want to
execute from within MATLAB.

Shell Escape
The exclamation point initiates a shell escape function. Such a function is to
be performed directly by the operating system:

!rmdir oldtests

See “Shell Escape Functions” on page 2-7 for more information.

Parentheses — ()
Parentheses are used mostly for indexing into elements of an array or for
specifying arguments passed to a called function.

Array Indexing
When parentheses appear to the right of a variable name, they are indices
into the array stored in that variable:

A(2, 7, 4)

Function Input Arguments
When parentheses follow a function name in a function declaration or call, the
enclosed list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %
The percent sign is most commonly used to indicate nonexecutable text within
the body of a program. This text is normally used to include comments in your
code. Some functions also interpret the percent sign as a conversion specifier.

See “Help Text” on page 3-11 for more information.

2-116

Symbol Reference

Single Line Comments
Precede any one-line comments in your code with a percent sign. MATLAB
does not execute anything that follows a percent sign (that is, unless the
sign is quoted, '%'):

% The purpose of this routine is to compute
% the value of ...

Conversion Specifiers
Some functions, like sscanf and sprintf, precede conversion specifiers with
the percent sign:

sprintf('%s = %d', name, value)

Percent-Brace — %{ %}
The %{ and %} symbols enclose a block of comments that extend beyond one
line.

Block Comments
Enclose any multiline comments with percent followed by an opening or
closing brace.

%{
The purpose of this routine is to compute
the value of ...
%}

Note With the exception of whitespace characters, the %{ and %} operators
must appear alone on the lines that immediately precede and follow the block
of help text. Do not include any other text on these lines.

Semicolon — ;
The semicolon can be used to construct arrays, suppress output from a
MATLAB command, or to separate commands entered on the same line.

2-117

2 Basic Program Components

Array Row Separator
When used within square brackets to create a new array or concatenate
existing arrays, the semicolon creates a new row in the array:

A = [5, 8; 3, 4]
A =

5 8
3 4

Output Suppression
When placed at the end of a command, the semicolon tells MATLAB not to
display any output from that command. In this example, MATLAB does not
display the resulting 100-by-100 matrix:

A = ones(100, 100);

Command or Statement Separator
Like the comma operator, you can enter more than one MATLAB command
on a line by separating each command with a semicolon. MATLAB suppresses
output for those commands terminated with a semicolon, and displays the
output for commands terminated with a comma.

In this example, assignments to variables A and C are terminated with
a semicolon, and thus do not display. Because the assignment to B is
comma-terminated, the output of this one command is displayed:

A = 12.5; B = 42.7, C = 1.25;
B =

42.7000

Single Quotes — ’ ’
Single quotes are the constructor symbol for MATLAB character arrays.

2-118

Symbol Reference

Character and String Constructor
MATLAB constructs a character array from all characters enclosed in single
quotes. If only one character is in quotes, then MATLAB constructs a 1-by-1
array:

S = 'Hello World'

See “Characters and Strings” on page 1-39 for more information.

Space Character
The space character serves a purpose similar to the comma in that it can be
used to separate row elements in an array constructor, or the values returned
by a function.

Row Element Separator
You have the option of using either commas or spaces to delimit the row
elements of an array when constructing the array. To create a 1-by-3 array,
use

A = [5.92 8.13 3.53]
A =

5.9200 8.1300 3.5300

When indexing into an array, you must always use commas to reference each
dimension of the array.

Function Output Separator
Spaces are allowed when specifying a list of values to be returned by a
function. You can use spaces to separate return values in both function
declarations and function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \
The slash (/) and backslash (\) characters separate the elements of a path or
directory string. On Microsoft® Windows®-based systems, both slash and

2-119

2 Basic Program Components

backslash have the same effect. On The Open Group UNIX®-based systems,
you must use slash only.

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

Square Brackets — []
Square brackets are used in array construction and concatenation, and also in
declaring and capturing values returned by a function.

Array Constructor
To construct a matrix or array, enclose all elements of the array in square
brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

Concatenation
To combine two or more arrays into a new array through concatenation,
enclose all array elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

Function Declarations and Calls
When declaring or calling a function that returns more than one output,
enclose each return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)

2-120

Internal MATLAB® Functions

Internal MATLAB Functions

In this section...

“Overview” on page 2-121
“M-File Functions” on page 2-121
“Built-In Functions” on page 2-122
“Overloaded MATLAB Functions” on page 2-123

Overview
Many of the functions provided with the MATLAB software are implemented
as M-files just like the M-files that you will create with MATLAB. Other
MATLAB functions are precompiled executable programs called built-ins
that run much more efficiently. Many of the MATLAB functions are also
overloaded so that they handle different classes appropriately.

M-File Functions
If you look in the subdirectories of the toolbox\matlab directory, you can find
the M-file sources to many of the functions supplied with MATLAB. You can
locate your toolbox\matlab directory by typing

dir([matlabroot '\toolbox\matlab\'])

MATLAB functions with an M-file source are just like any other functions
coded with MATLAB. When one of these M-file functions is called, MATLAB
parses and executes each line of code in the M-file. It saves the parsed version
of the function in memory, eliminating parsing time on any further calls to
this function.

Identifying M-File Functions
To find out if a function is implemented with an M-file, use the exist function.
The exist function searches for the name you enter on the MATLAB path
and returns a number identifying the source. If the source is an M-file, then
exist returns the number 2. This example identifies the source for the
repmat function as an M-file:

2-121

2 Basic Program Components

exist repmat
ans =

2

The exist function also returns 2 for files that have a file type unknown to
MATLAB. However, if you invoke exist on a MATLAB function name, the
file type will be known to MATLAB and will return 2 only on M-files.

Viewing the Source Code
One advantage of functions implemented as M-files is that you can look at the
source code. This may help when you need to understand why the function
returns a value you did not expect, if you need to figure out how to code
something in MATLAB that is already coded in a function, or perhaps to help
you create a function that overloads one of the MATLAB functions.

To find the source code for any MATLAB M-file function, use which:

which repmat
D:\matlabR14\toolbox\matlab\elmat\repmat.m

Built-In Functions
Functions that are frequently used or that can take more time to execute are
often implemented as executable files. These functions are called built-ins.

Unlike M-file functions, you cannot see the source code for built-ins. Although
most built-in functions do have an M-file associated with them, this file is
there mainly to supply the help documentation for the function. Take the
reshape function, for example, and find it on the MATLAB path:

which reshape
D:\matlabR14\toolbox\matlab\elmat\reshape.m

If you type this M-file out, you will see that it consists almost entirely of help
text. At the bottom is a call to the built-in executable image.

2-122

Internal MATLAB® Functions

Identifying Built-In Functions
As with M-file functions, you can identify which functions are built-ins using
the exist function. This function identifies built-ins by returning the number
5:

exist reshape
ans =

5

Forcing a Built-In Call
If you overload any of the MATLAB built-in functions to handle a specific
class, then MATLAB will always call the overloaded function on that type.
If, for some reason, you need to call the built-in version, you can override the
usual calling mechanism using a function called builtin. The expression

builtin('reshape', arg1, arg2, ..., argN);

forces a call to MATLAB built-in reshape, passing the arguments shown,
even though an overload exists for the class in this argument list.

Note With the exception of overloading, you should not create an M-file that
has the same name as a MATLAB built-in. Because built-in functions are
given a higher precedence than most other types of M-files (with the exception
of private and subfunctions), MATLAB does not recognize M-file functions
that share the same name with a built-in.

Overloaded MATLAB Functions
An overloaded function is an additional implementation of an existing
function that has been designed specifically to handle a certain class. When
you pass an argument of this type in a call to the function, MATLAB looks
for the function implementation that handles that type and executes that
function code.

Each overloaded MATLAB function has an M-file on the MATLAB path. The
M-files for a certain class are placed in a directory named with an @ sign
followed by the class name. For example, to overload the MATLAB plot

2-123

2 Basic Program Components

function to plot expressions of a class named polynom differently than other
class, you would create a directory called @polynom and store your own
version of plot.m in that directory.

You can add your own overloads to any function by creating a class directory
for the class you wish to support for that function, and creating an M-file
that handles that type in a manner different from the default. See Defining
Classes — Syntax and Developing Classes — Typical Workflow.

When you use the which command with the -all option, MATLAB returns
all occurrences of the file you are looking for. This is an easy way to find
functions that are overloaded:

which -all set % Show all implementations for 'set'

2-124

3

Functions and Scripts

• “Program Development” on page 3-2

• “Working with M-Files” on page 3-7

• “M-File Scripts and Functions” on page 3-19

• “Calling Functions” on page 3-25

• “Function Arguments” on page 3-39

3 Functions and Scripts

Program Development

In this section...

“Overview” on page 3-2
“Creating a Program” on page 3-2
“Getting the Bugs Out” on page 3-4
“Cleaning Up the Program” on page 3-5
“Improving Performance” on page 3-5
“Checking It In” on page 3-6

Overview
When you write a MATLAB function or script, you save it to a file called
an M-file (named after its .m file extension). There are two types of M-files
that you can write: scripts and functions. This section covers basic program
development, describes how to write and call scripts and functions, and
shows how to pass different types of data in a function call. Associated
with each step of this process are certain MATLAB tools and utilities that
are fully documented in the Desktop Tools and Development Environment
documentation.

For more ideas on good programming style, see “Program Development”
on page 12-18 in the MATLAB Programming Tips documentation. The
Programming Tips section is a compilation of useful pieces of information that
can show you alternate and often more efficient ways to accomplish common
programming tasks while also expanding your knowledge of MATLAB.

Creating a Program
You can type in your program code using any text editor. This section focuses
on using the MATLAB Editor/Debugger for this purpose. The Editor/Debugger
is fully documented in Ways to Edit and Debug Files in the Desktop Tools and
Development Environment documentation.

3-2

Program Development

The first step in creating a program is to open an editing window. To create a
new M-file, type the word edit at the MATLAB command prompt. To edit an
existing M-file, type edit followed by the filename:

edit drawPlot.m

MATLAB opens a new window for entering your program code. As you type in
your program, MATLAB keeps track of the line numbers in the left column.

Saving the Program
It is usually a good idea to save your program periodically while you are in the
development process. To do this, click File > Save in the Editor/Debugger.
Enter a filename with a .m extension in the Save file as dialog box that
appears and click OK. It is customary and less confusing if you give the M-file
the same name as the first function in the M-file.

Running the Program
Before trying to run your program, make sure that its M-file is on the
MATLAB path. The MATLAB path defines those directories that you want
MATLAB to know about when executing M-files. The path includes all the
directories that contain functions provided with MATLAB. It should also
include any directories that you use for your own functions.

Use the which function to see if your program is on the path:

which drawPlot
D:\matlabR14\work\drawPlot.m

If not, add its directory to the path using the addpath function:

addpath('D:\matlabR14\work')

Now you can run the program just by typing the name of the M-file at the
MATLAB command prompt:

drawPlot(xdata, ydata)

3-3

3 Functions and Scripts

Getting the Bugs Out
In all but the simplest programs, you are likely to encounter some type of
unexpected behavior when you run the program for the first time. Program
defects can show up in the form of warning or error messages displayed in the
command window, programs that hang (never terminate), inaccurate results,
or some number of other symptoms. This is where the second functionality
of the MATLAB Editor/Debugger becomes useful.

The MATLAB Debugger enables you to examine the inner workings of your
program while you run it. You can stop the execution of your program at any
point and then continue from that point, stepping through the code line by
line and examining the results of each operation performed. You have the
choice of operating the debugger from the Editor window that displays your
program, from the MATLAB command line, or both.

The Debugging Process
You can step through the program right from the start if you want. For
longer programs, you will probably save time by stopping the program
somewhere in the middle and stepping through from there. You can do this
by approximating where the program code breaks and setting a stopping
point (or breakpoint) at that line. Once a breakpoint has been set, start
your program from the MATLAB command prompt. MATLAB opens an
Editor/Debugger window (if it is not already open) showing a green arrow
pointing to the next line to execute.

From this point, you can examine any values passed into the program, or the
results of each operation performed. You can step through the program line
by line to see which path is taken and why. You can step into any functions
that your program calls, or choose to step over them and just see the end
results. You can also modify the values assigned to a variable and see how
that affects the outcome.

To learn about using the MATLAB Debugger, see Debugging and Improving
M-Files in the Desktop Tools and Development Environment documentation.
Type help debug for a listing of all MATLAB debug functions.

For programming tips on how to debug, see “Debugging” on page 12-21.

3-4

Program Development

Cleaning Up the Program
Even after your program is bug-free, there are still some steps you can take
to improve its performance and readability. The MATLAB M-Lint utility
generates a report that can highlight potential problems in your code. For
example, you may be using the elementwise AND operator (&) where the
short-circuit AND (&&) is more appropriate. You may be using the find
function in a context where logical subscripting would be faster.

MATLAB offers M-Lint and several other reporting utilities to help you
make the finishing touches to your program code. These tools are described
under Tuning and Refining M-Files in the Desktop Tools and Development
Environment documentation.

Improving Performance
The MATLAB Profiler generates a report that shows how your program
spends its processing time. For details about using the MATLAB Profiler,
see Profiling for Improving Performance in the MATLAB Desktop Tools and
Development Environment documentation. For tips on other ways to improve
the performance of your programs, see Chapter 10, “Performance”.

Three types of reports are available:

• “Summary Report” on page 3-5

• “Detail Report” on page 3-5

• “File Listing” on page 3-6

Summary Report
The summary report provides performance information on your main program
and on every function it calls. This includes how many times each function is
called, the total time spent in that function, along with a bar graph showing
the relative time spent by each function.

Detail Report
When you click a function name in the summary report, MATLAB displays a
detailed report on that function. This report shows the lines of that function
that take up the most time, the time spent executing that line, the percentage

3-5

3 Functions and Scripts

of total time for that function that is spent on that line, and a bar graph
showing the relative time spent on the line.

File Listing
The detail report for a function also displays the entire M-file code for that
function. This listing enables you to view the time-consuming code in the
context of the entire function body. For every line of code that takes any
significant time, additional performance information is provided by the
statistics and by the color and degree of highlighting of the program code.

Checking It In
Source control systems offer a way to manage large numbers of files while
they are under development. They keep track of the work done on these files
as your project progresses, and also ensure that changes are made in a secure
and orderly fashion.

If you have a source control system available to you, you will probably want to
check your M-files into the system once they are complete. If further work is
required on one of those files, you just check it back out, make the necessary
modifications, and then check it back in again.

MATLAB provides an interface to external source control systems so that you
can check files in and out directly from your MATLAB session. See Revision
Control in the Desktop Tools and Development Environment documentation
for instructions on how to use this interface.

3-6

Working with M-Files

Working with M-Files

In this section...

“Overview” on page 3-7
“Types of M-Files” on page 3-7
“Basic Parts of an M-File” on page 3-8
“Creating a Simple M-File” on page 3-13
“Providing Help for Your Program” on page 3-15
“Cleaning Up the M-File When Done” on page 3-16
“Creating P-Code Files” on page 3-17

Overview
The MATLAB software provides a full programming language that enables
you to write a series of MATLAB statements into a file and then execute
them with a single command. You write your program in an ordinary text
file, giving the file a name of filename.m. The term you use for filename
becomes the new command that MATLAB associates with the program. The
file extension of .m makes this a MATLAB M-file.

Types of M-Files
M-files can be scripts that simply execute a series of MATLAB statements, or
they can be functions that also accept input arguments and produce output.

MATLAB scripts:

• Are useful for automating a series of steps you need to perform many times.

• Do not accept input arguments or return output arguments.

• Store variables in a workspace that is shared with other scripts and with
the MATLAB command line interface.

MATLAB functions:

• Are useful for extending the MATLAB language for your application.

3-7

3 Functions and Scripts

• Can accept input arguments and return output arguments.

• Store variables in a workspace internal to the function.

Basic Parts of an M-File
This simple function shows the basic parts of an M-file. Note that any line
that begins with % is not executable:

function f = fact(n) Function definition line
% Compute a factorial value. H1 line
% FACT(N) returns the factorial of N, Help text
% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N). Comment
f = prod(1:n); Function body

The table below briefly describes each of these M-file parts. Both functions
and scripts can have all of these parts, except for the function definition line
which applies to functions only. These parts are described in greater detail
following the table.

M-File Element Description

Function definition line
(functions only)

Defines the function name, and the number and
order of input and output arguments

H1 line A one line summary description of the program,
displayed when you request help on an entire
directory, or when you use lookfor

Help text A more detailed description of the program,
displayed together with the H1 line when you
request help on a specific function

Function or script body Program code that performs the actual
computations and assigns values to any output
arguments

Comments Text in the body of the program that explains
the internal workings of the program

3-8

Working with M-Files

Function Definition Line
The function definition line informs MATLAB that the M-file contains a
function, and specifies the argument calling sequence of the function. This
line contains the function keyword and must always be the first line of a
function M-file, with the exception of lines that are nonexecutable comments.
The function definition line for the fact function is

��������	
	�	����
��

�����	��������

��
����

������	��������

��������	����

All MATLAB functions have a function definition line that follows this pattern.

Function Name. Function names must begin with a letter, may contain any
alphanumeric characters or underscores, and must be no longer than the
maximum allowed length (returned by the function namelengthmax). Because
variables must obey similar rules, you can use the isvarname function to
check whether a function name is valid:

isvarname myfun

Function names also cannot be the same as any MATLAB keyword. Use the
iskeyword function with no inputs to display a list of all keywords.

Although function names can be of any length, MATLAB uses only the first
N characters of the name (where N is the number returned by the function
namelengthmax) and ignores the rest. Hence, it is important to make each
function name unique in the first N characters:

N = namelengthmax
N =

63

3-9

3 Functions and Scripts

Note Some operating systems may restrict file names to shorter lengths.

The name of the text file that contains a MATLAB function consists of the
function name with the extension .m appended. For example,

average.m

If the filename and the function definition line name are different, the
internal (function) name is ignored. Thus, if average.m is the file that defines
a function named computeAverage, you would invoke the function by typing

average

Note While the function name specified on the function definition line does
not have to be the same as the filename, it is best to use the same name for
both to avoid confusion.

Function Arguments. If the function has multiple output values, enclose
the output argument list in square brackets. Input arguments, if present, are
enclosed in parentheses following the function name. Use commas to separate
multiple input or output arguments. Here is the declaration for a function
named sphere that has three inputs and three outputs:

function [x, y, z] = sphere(theta, phi, rho)

If there is no output, leave the output blank

function printresults(x)

or use empty square brackets:

function [] = printresults(x)

The variables that you pass to the function do not need to have the same
name as those in the function definition line.

3-10

Working with M-Files

The H1 Line
The H1 line, so named because it is the first help text line, is a comment
line immediately following the function definition line. Because it consists
of comment text, the H1 line begins with a percent sign, %. For the average
function, the H1 line is

% AVERAGE Mean of vector elements.

This is the first line of text that appears when a user types help functionname
at the MATLAB prompt. Further, the lookfor function searches on and
displays only the H1 line. Because this line provides important summary
information about the M-file, it is important to make it as descriptive as
possible.

Help Text
You can create online help for your M-files by entering help text on one or
more consecutive comment lines at the start of your M-file program. MATLAB
considers the first group of consecutive lines immediately following the H1
line that begin with % to be the online help text for the function. The first line
without % as the left-most character ends the help.

The help text for the average function is

% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.

When you type help functionname at the command prompt, MATLAB
displays the H1 line followed by the online help text for that function. The
help system ignores any comment lines that appear after this help block.

Note Help text in an M-file can be viewed at the MATLAB command prompt
only (using help functionname). You cannot display this text using the
MATLAB Help browser. You can, however, use the Help browser to get
help on MATLAB functions and also to read the documentation on any
MathWorks™ products.

3-11

3 Functions and Scripts

The Function or Script Body
The function body contains all the MATLAB code that performs computations
and assigns values to output arguments. The statements in the function
body can consist of function calls, programming constructs like flow control
and interactive input/output, calculations, assignments, comments, and
blank lines.

For example, the body of the average function contains a number of simple
programming statements:

[m,n] = size(x);
if (~((m == 1) || (n == 1)) || ...

(m == 1 && n == 1)) % Flow control

error('Input must be a vector') % Error message display
end
y = sum(x)/length(x); % Computation and assignment

Comments
As mentioned earlier, comment lines begin with a percent sign (%). Comment
lines can appear anywhere in an M-file, and you can append comments to the
end of a line of code. For example,

% Add up all the vector elements.
y = sum(x) % Use the sum function.

In addition to comment lines, you can insert blank lines anywhere in an
M-file. Blank lines are ignored. However, a blank line can indicate the end
of the help text entry for an M-file.

Block Comments. To write comments that require more than one line, use
the block comment operators, %{ and %}:

%{
This next block of code checks the number of inputs
passed in, makes sure that each input is a valid data
type, and then branches to start processing the data.
%}

3-12

Working with M-Files

Note The %{ and %} operators must appear alone on the lines that
immediately precede and follow the block of help text. Do not include any
other text on these lines.

Creating a Simple M-File
You create M-files using a text editor. MATLAB provides a built-in editor, but
you can use any text editor you like. Once you have written and saved the
M-file, you can run the program as you would any other MATLAB function
or command.

The process looks like this:

Using Text Editors
M-files are ordinary text files that you create using a text editor. If you use
the MATLAB Editor/Debugger, open a new file by selecting New > M-File
from the File menu at the top of the MATLAB Command Window.

Another way to edit an M-file is from the MATLAB command line using the
edit function. For example,

edit foo

3-13

3 Functions and Scripts

opens the editor on the file foo.m. Omitting a filename opens the editor on
an untitled file.

You can create the fact function shown in “Basic Parts of an M-File” on page
3-8 by opening your text editor, entering the lines shown, and saving the text
in a file called fact.m in your current directory.

Once you have created this file, here are some things you can:

• List the names of the files in your current directory:

what

• List the contents of M-file fact.m:

type fact

• Call the fact function:

fact(5)
ans =

120

A Word of Caution on Saving M-Files
Save any M-files you create and any MathWorks supplied M-files that you
edit in directories outside of the directory tree in which the MATLAB software
is installed. If you keep your files in any of the installed directories, your files
may be overwritten when you install a new version of MATLAB.

MATLAB installs its software into directories under matlabroot/toolbox.
To see what matlabroot is on your system, type matlabroot at the MATLAB
command prompt.

Also note that locations of files in the matlabroot/toolbox directory tree are
loaded and cached in memory at the beginning of each MATLAB session to

3-14

Working with M-Files

improve performance. If you save files to matlabroot/toolbox directories
using an external editor, or if you add or remove files from these directories
using file system operations, enter the commands clear functionname and
rehash toolbox before you use the files in the current session.

For more information, see the rehash function reference page or the section
Toolbox Path Caching in the Desktop Tools and Development Environment
documentation.

Providing Help for Your Program
You can provide user information for the programs you write by including a
help text section at the beginning of your M-file. (See “Help Text” on page
3-11).

You can also make help entries for an entire directory by creating a file with
the special name Contents.m that resides in the directory. This file must
contain only comment lines; that is, every line must begin with a percent sign.
MATLAB displays the lines in a Contents.m file whenever you type

help directoryname

Contents.m files are optional. You might have directories of your own with
M-files that you don’t necessarily want public. For this or other reasons, you
might choose not to provide this type of help listing for these directories. If
you have a directory that is on the path that does not have a Contents.m
file, MATLAB displays (No table of contents file) for that directory
in response to the help command. If you do not want to see this displayed,
creating an empty Contents.m file will disable this message for that directory.

Also, if a directory does not contain a Contents.m file, typing

help directoryname

displays the first help line (the H1 line) for each M-file in the directory.

There is a tool in the Current Directory browser, called the Contents Report,
that you can use to help create and validate your Contents.m files. See
“Displaying and Updating a Report on the Contents of a Directory” in the

3-15

3 Functions and Scripts

MATLAB Desktop Tools and Development Environment documentation for
more information.

Cleaning Up the M-File When Done
When you have programmed all that you set out to do in your M-file, there is
one last step to consider before it is complete. That is to make sure that you
leave your program environment in a clean state that will not interfere with
any other program code. For example, you might want to

• Close any files that you opened for import or export.

• Delete large temporary variables that take up significant space in memory.

• Lock or unlock memory to prevent or allow erasing M or MEX-files.

• Ensure that variables are not left in an unexpected state.

• Set your working directory back to its default if you have changed it.

• Make sure global and persistent variables are in the correct state.

• Restore any variables you used temporarily back to their original values.

MATLAB provides the onCleanup function for this purpose. This function,
when used within any M-file program, establishes a cleanup routine for that
function. When the function terminates, whether normally or due to an error,
MATLAB automatically executes the cleanup routine. You can declare any
number of cleanup routines for an M-file.

The following statement establishes a function handle to a cleanup routine,
and associates the handle with output variable cleanupObj. (This variable is
actually a MATLAB object.) If you clear cleanupObj, or when your function
finishes executing, the function passed in as @myCleanupRoutine executes.

When your M-file program exits, MATLAB finds any instances of the
onCleanup class and executes the associated function handles:

cleanupObj = onCleanup(@myCleanupRoutine);

3-16

Working with M-Files

Example 1
MATLAB closes the file with identifier fid when function openFileSafely
terminates:

function openFileSafely(fileName)
fid = fopen(fileName, 'r');
c = onCleanup(@()fclose(fid));

s = fread(fid);
.
.
.

% fclose(fid) executes here.

Example 2
This example preserves the current directory whether functionThatMayError
returns an error or not:

function changeDirectorySafely(fileName)
currentDir = pwd;
c = onCleanup(@()cd(currentDir));

functionThatMayError;
end % c executes cd(currentDir) here

Creating P-Code Files
You can save a preparsed version of a function or script, called P-code files, for
later MATLAB sessions using the pcode function. For example,

pcode average

parses average.m and saves the resulting pseudocode to the file named
average.p. This saves MATLAB from reparsing average.m the first time you
call it in each session.

MATLAB is very fast at parsing so the pcode function rarely makes much
of a speed difference.

3-17

3 Functions and Scripts

One situation where pcode does provide a speed benefit is for large GUI
applications. In this case, many M-files must be parsed before the application
becomes visible.

You can also use pcode to hide algorithms you have created in your M-file, if
you need to do this for proprietary reasons.

3-18

M-File Scripts and Functions

M-File Scripts and Functions

In this section...

“M-File Scripts” on page 3-19
“M-File Functions” on page 3-20
“Types of Functions” on page 3-21
“Organizing Your Functions” on page 3-22
“Identifying Dependencies” on page 3-23

M-File Scripts
Scripts are the simplest kind of M-file because they have no input or output
arguments. They are useful for automating series of MATLAB commands,
such as computations that you have to perform repeatedly from the command
line.

The Base Workspace
Scripts share the base workspace with your interactive MATLAB session and
with other scripts. They operate on existing data in the workspace, or they
can create new data on which to operate. Any variables that scripts create
remain in the workspace after the script finishes so you can use them for
further computations. You should be aware, though, that running a script can
unintentionally overwrite data stored in the base workspace by commands
entered at the MATLAB command prompt.

Simple Script Example
These statements calculate rho for several trigonometric functions of theta,
then create a series of polar plots:

% An M-file script to produce % Comment lines
% "flower petal" plots
theta = -pi:0.01:pi; % Computations
rho(1,:) = 2 * sin(5 * theta) .^ 2;
rho(2,:) = cos(10 * theta) .^ 3;
rho(3,:) = sin(theta) .^ 2;
rho(4,:) = 5 * cos(3.5 * theta) .^ 3;

3-19

file:///B:/matlab/doc/src/toolbox/matlab/ref/script.html

3 Functions and Scripts

for k = 1:4
polar(theta, rho(k,:)) % Graphics output
pause

end

Try entering these commands in an M-file called petals.m. This file is now
a MATLAB script. Typing petals at the MATLAB command line executes
the statements in the script.

After the script displays a plot, press Enter or Return to move to the next
plot. There are no input or output arguments; petals creates the variables it
needs in the MATLAB workspace. When execution completes, the variables
(i, theta, and rho) remain in the workspace. To see a listing of them, enter
whos at the command prompt.

M-File Functions
Functions are program routines, usually implemented in M-files, that
accept input arguments and return output arguments. You define MATLAB
functions within a function M-file; that is, a file that begins with a line
containing the function key word. You cannot define a function within a
script M-file or at the MATLAB command line.

Functions always begin with a function definition line and end either with the
first matching end statement, the occurrence of another function definition
line, or the end of the M-file, whichever comes first. Using end to mark the
end of a function definition is required only when the function being defined
contains one or more nested functions.

Functions operate on variables within their own workspace. This workspace
is separate from the base workspace; the workspace that you access at the
MATLAB command prompt and in scripts.

The Function Workspace
Each M-file function has an area of memory, separate from the MATLAB base
workspace, in which it operates. This area, called the function workspace,
gives each function its own workspace context.

3-20

file:///B:/matlab/doc/src/toolbox/matlab/ref/function.html

M-File Scripts and Functions

While using MATLAB, the only variables you can access are those in the
calling context, be it the base workspace or that of another function. The
variables that you pass to a function must be in the calling context, and the
function returns its output arguments to the calling workspace context.
You can, however, define variables as global variables explicitly, allowing
more than one workspace context to access them. You can also evaluate any
MATLAB statement using variables from either the base workspace or the
workspace of the calling function using the evalin function. See “Extending
Variable Scope” on page 2-17 for more information.

Simple Function Example
The average function is a simple M-file that calculates the average of the
elements in a vector:

function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.
[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))

error('Input must be a vector')
end
y = sum(x)/length(x); % Actual computation

Try entering these commands in an M-file called average.m. The average
function accepts a single input argument and returns a single output
argument. To call the average function, enter

z = 1:99;

average(z)
ans =

50

Types of Functions
MATLAB provides the following types of functions. Each function type is
described in more detail in a later section of this documentation:

3-21

3 Functions and Scripts

• The “Primary M-File Functions” on page 4-15 is the first function in an
M-file and typically contains the main program.

• “Subfunctions” on page 4-33 act as subroutines to the main function. You
can also use them to define multiple functions within a single M-file.

• “Nested Functions” on page 4-16 are functions defined within another
function. They can help to improve the readability of your program and
also give you more flexible access to variables in the M-file.

• “Anonymous Functions” on page 4-3 provide a quick way of making a
function from any MATLAB expression. You can compose anonymous
functions either from within another function or at the MATLAB command
prompt.

• “Overloaded Functions” on page 4-37 are useful when you need to create a
function that responds to different types of inputs accordingly. They are
similar to overloaded functions in any object-oriented language.

• “Private Functions” on page 4-35 give you a way to restrict access to a
function. You can call them only from an M-file function in the parent
directory.

You might also see the term function functions in the documentation. This is
not really a separate function type. The term function functions refers to any
functions that accept another function as an input argument. You can pass a
function to another function using a function handle.

Organizing Your Functions
When writing and saving your M-file functions, you have several options
on how to organize the functions within the M-file, and also where in your
directory structure you want to save them. Be sure to place your function
M-files either in the directory in which you plan to run MATLAB, or in some
other directory that is on the MATLAB path.

Use this table as a general guide when creating and saving your M-files:

If your program or routine . . . then . . .

Requires only one function Make it a single (primary) function
in the M-file.

3-22

M-File Scripts and Functions

If your program or routine . . . then . . .

Also requires subroutines Make each subroutine a subfunction
within same M-file as the primary.

Is for use only in the context of a
certain function

Nest it within the other function.
Nested functions also offer wider
access to variables within the
function.

Is a constructor or method of a
MATLAB class

Put the M-file in a MATLAB class
directory.

Is to have limited access Put the M-file in a private
subdirectory.

Is part of a group of similar functions
or classes

Put the M-file in a package
subdirectory.

If necessary, you can work around some of the constraints regarding function
access by using function handles. You might find this useful when debugging
your functions.

Identifying Dependencies
Most any program you write will make calls to other functions and scripts. If
you need to know what other functions and scripts your program is dependent
upon, use one of the techniques described below.

Simple Display of M-File Dependencies
For a simple display of all M-files referenced by a particular function, follow
these steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you
have locked functions (which you can check using inmem) unlock them with
munlock, and then repeat step 1.

3-23

3 Functions and Scripts

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, because you can get different
results when calling the same function with different arguments.

3 Type inmem to display all M-files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output:

[mfiles, mexfiles] = inmem

Detailed Display of M-File Dependencies
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on:

[list, builtins, classes] = depfun('strtok.m');

list
list =

'D:\matlabR14\toolbox\matlab\strfun\strtok.m'
'D:\matlabR14\toolbox\distcomp\toChar.m'
'D:\matlabR14\toolbox\matlab\datafun\prod.m'
'D:\matlabR14\toolbox\matlab\datatypes\@opaque\char.m'

.

.

.

3-24

Calling Functions

Calling Functions

In this section...

“Command vs. Function Syntax” on page 3-25
“What Happens When You Call a Function” on page 3-34
“Determining Which Function Gets Called” on page 3-34
“Calling External Functions” on page 3-37
“Running External Programs” on page 3-38

Command vs. Function Syntax

Overview
MATLAB syntax differs for issuing commands and for calling functions. This
is sometimes referred to as command-function duality. In many cases, you
can use either of the two syntaxes in commands and in function calls.

You are issuing a command when you tell MATLAB to do something. You
might use a function name in the command and possibly a few switches or
modifiers, usually expressed in the form of character strings. But, in most
cases, there is no need to pass data such as numeric values or variables in
a command. There is also no expectation that the command returns any
output value.

A few examples of MATLAB commands are shown here. Note that MATLAB
passes only string arguments and does not return any output:

clear
format long
dbstop in find_maxval
addpath C:\srcdir D:\matlab\testdir2 -end
whos -file savefile.mat -regexp ^p*

Unlike commands, most functions act upon data. You pass data into the
function when calling it, and often expect it to return data upon completion.
These input and output values can be in the form of any MATLAB class (e.g.,
arrays of integers, characters, cells, function handles, etc.).

3-25

3 Functions and Scripts

Examples of function calls are shown below. Note that MATLAB requires
parentheses around the input argument list, quotation marks around
characters and strings, and brackets around multiple output values:

y = eye(n)
C = complex(A, B);
m = memmapfile('records.dat', 'Offset', 1024, ...

'Format', 'uint32');
[x1 x2 x3 x4] = deal(A{:});

Regardless of which syntax you use, function names are always sensitive to
case. When you call a function, use the correct combination of upper and
lowercase letters so that the name is an exact match. Otherwise, you risk
calling a different function that does match, but is elsewhere on the path.

MATLAB Command Syntax
A command that makes a function call consists of the function name followed
by one or more arguments separated by spaces. In most cases, all input
arguments are considered to be strings. Because of this, enclosing string
arguments with quotation marks is optional.

The format for calling a function using command syntax is

functionname string1 string2 string3

You can use command syntax in calling a function when both of the following
are true:

• All input arguments must be characters or strings. Variable names,
expressions that require evaluation, and non-character classes (e.g.,
doubles, structures, function handles) are not allowed.

• You do not need to capture output in a variable. Commands that display
information on your monitor screen are acceptable.

3-26

Calling Functions

Note There are a few functions, such as save and load, that might appear
to depart from this first rule. For an explanation of how these functions
operate when using this syntax, see “Using save and load with Command
Syntax” on page 3-28.

When you use command syntax, MATLAB interprets each input argument
as a character string literal. There is no need to enclose these string
arguments in quotation marks unless the argument includes one or more
space characters. This is true whether the argument is a string of plain text,
a file name, or a command switch:

strcat one two three four % Command with 4 arguments.
ans =

onetwothreefour

strcat 'one' 'two' 'three' 'four' % Command with 4 arguments.
ans =

onetwothreefour

strcat 'one two three four' % Command with 1 argument.
ans =

one two three four

Several examples of command syntax are given below.

Example 1. This command copies file square.m to directory
D:\matlab\functions. All arguments are strings:

copyfile square.m D:\matlab\functions

Example 2. The example on the left calls disp using command syntax.
MATLAB interprets A as a string literal and displays the character A.

The example on the right passes the value of A to disp, which then displays
3.1416:

3-27

3 Functions and Scripts

Command Syntax Function Syntax

A = pi;

disp A
A

A = pi;

disp(A)
3.1416

Using save and load with Command Syntax. There are a few functions,
such as save and load, that do accept variable names as input arguments.
Examples follow:

save mydata.mat x y z % x, y, and z are variables
load mydata x z % x and z are variables
clear N % N is a variable
whos A % A is a variable

MATLAB Function Syntax
Function calls written in function syntax

• Enclose the input argument list in parentheses

• Separate the inputs with commas

• Enclose string arguments with single quotation marks

• Optionally assign any output from the function to one or more output
arguments

Unlike command syntax, there are no limitations on when you can use
function syntax in a function call.

Function calls written in function syntax enclose the input argument list in
parentheses, separate the inputs with commas, enclose string arguments with
single quotation marks, and optionally assign any output from the function
to one or more output arguments. Unlike command syntax, there are no
limitations on when you can use function syntax in a function call.

The format for MATLAB function syntax is

out = functionname(variable, 'string', expression, ...);

3-28

Calling Functions

Calls written in function syntax pass the values assigned to each variable in
the argument list. For example, this expression passes the values assigned to
A0, A1, and A2 to the polyeig function:

e = polyeig(A0, A1, A2)

If a function returns more than one value, separate the output variables with
commas or spaces, and enclose them all in square brackets ([]):

[out1, out2, ..., outN] = functionname(in1, in2, ..., inN);

For example,

[pathstr, name, ext, versn] = fileparts(filename);

Several examples of function syntax appear below. For more examples, see
the section on “Common Mistakes In Syntax” on page 3-30

Example 1 — Simple Variable Comparison. Passing two variables
representing equal strings to the strcmp function using function and
command syntaxes gives different results. The function syntax passes the
values of the arguments. strcmp returns a 1, which means they are equal:

str1 = 'one'; str2 = 'one';

strcmp(str1, str2) % Function syntax
ans =

1 (equal)

The command syntax passes the names of the variables, 'str1' and 'str2',
which are unequal:

str1 = 'one'; str2 = 'one';

strcmp str1 str2 % Command syntax
ans =

0 (unequal)

3-29

3 Functions and Scripts

Example 2 — Passing Variable Names. The reshape function takes three
input arguments: a variable name and two integers to specify dimensions for
the new shape. It also returns the reshaped array. For both of these reasons,
you need to use function syntax for this operation:

S1 = ...
'MATLAB: Accelerating the pace of engineering and science.';

S2 = reshape(S1, 19, 3);
S2'
ans =
MATLAB: Acceleratin
g the pace of engin
eering and science.

Command syntax interprets all three input arguments as strings and provides
no means for capturing the output:

reshape S1 19 3;
??? Error using ==> reshape
Size arguments must be integer scalars.

Common Mistakes In Syntax
The two MATLAB syntax styles are generally easy to use. You should have no
difficulty in using them if you keep in mind the rules stated in the previous
sections. Just the same, there are certain potential errors to watch out for.

In all examples in this section, it is the group of statements on the left that
are incorrect, and the statements on the right that show the correct usage.

Example 1 — Numeric Values Evaluated As Strings. The statement on
the left, below, appears to report that 500 is not numeric. However, because
this statement uses command syntax, the input is actually the string ’500’
and not the number. Use function syntax, as shown on the right, to get the
correct answer:

isnumeric 500 isnumeric(500)
ans = ans =

0 1

3-30

Calling Functions

Example 2 — Equal Values that Appear As Unequal. In this example,
it might seem that MATLAB is reporting the values of variables A and B as
unequal. However, it is not the values of A and B that are being compared
here; it is the variable names 'A' and 'B':

A = 500; B = 500; A = 500; B = 500;
isequal A B isequal(A, B)
ans = ans =

0 1

Example 3 — Command Switches Used in Function Syntax. When
using a command switch or modifier with function syntax, remember to
enclose not only the input arguments in quotation marks, but the command
switch, as well. In this example, -file needs to have quotation marks around
it:

whos(-file, 'savefile.mat') whos('-file', 'tempfile.mat')

A simpler method is to use command syntax for this type of statement:

whos -file tempfile.mat

Example 4 — Translation of Keywords. In command syntax, MATLAB
interprets keywords in the same way it does variable names, as string literals.
The statement to the left instructs MATLAB to search for a directory with
the literal name 'matlabroot', when what was intended was the directory
specified by this keyword. Function syntax uses the value of the keyword
instead:

cd matlabroot cd(matlabroot)

Example 5 — Variables That Hold Filenames. This example, uses the
fopen function to open the file accounts.txt. When this is done using
command syntax, MATLAB looks for a file named filename, which does not
exist. When working with filenames that are stored in variables, it is usually
best to use function syntax:

filename = 'accounts.txt'; filename = 'accounts.txt';
fopen filename; fopen(filename);

3-31

3 Functions and Scripts

Example 6 — Invalid String Comparisons. This example attempts to see
if the class of vector A is an 8-bit unsigned integer (uint8), but the comparison
is really between the strings 'class(A)' and 'int8':

A = int8(1:8) A = int8(1:8)
strcmp class(A) int8 strcmp(class(A), 'int8')
ans = ans =

0 1

Example 7 — Numeric Arguments. This example shows that command
syntax does not accept numeric arguments. Because command syntax
assumes that each input argument is a character string, the numeric input
3.499 is interpreted by MATLAB as a five-element character array '3.499',
numerically equivalent to the vector [51 46 52 57 57].

round 3.499 round(3.499)
ans = ans =

51 46 52 57 57 3

Example 8 — Save and Load. The save and load functions are often
easier to use with command syntax. The statement save M saves variable M,
not the character M, to the workspace:

M = magic(20); M = magic(20);
save(M) save M % or save('M')
clear M clear M
load(M) load M % or load('M')

Example 9 — Class as a Command. When using the class function to
display or return the class of a variable or value, always use the function
syntax:

class pi class(pi)
ans = ans =

char double

Recognizing Function Calls That Use Command Syntax
It can be difficult to tell whether a MATLAB expression is a function call
using command syntax or another kind of expression, such as an operation on
one or more variables. Consider the following example:

3-32

Calling Functions

ls ./d

Is this a call to the ls function with the directory ./d as its argument? Or is it
a request to perform elementwise division on the array that is the value of the
ls variable, using the value of the d variable as the divisor?

This example might appear unambiguous because MATLAB can determine
whether ls and d are functions or variables, but that is not always true.
Some MATLAB components, such as M-Lint and the Editor/Debugger, must
operate without reference to the MATLAB path or workspace. MATLAB
therefore uses syntactic rules to determine when an expression is a function
call using command syntax.

The rules are complicated and have exceptions. In general, when MATLAB
recognizes an identifier (which might name a function or a variable), it
analyzes the characters that follow the identifier to determine what kind of
expression exists. The expression is usually a function call using command
syntax when all of the following are true:

1 The identifier is followed immediately by white space.

2 The characters following the white space are not parentheses or an
assignment operator.

3 The characters following the white space are not an operator that is
itself followed by additional white space and then by characters that can
legitimately follow an operator.

The example above meets all three criteria and is therefore a function call
using command syntax:

ls ./d

The following examples are not function calls using command syntax:

% No white space following the ls identifier
% Interpretation: elementwise division
ls./d

% Parenthesis following white space
% Interpretation: function call using function syntax

3-33

3 Functions and Scripts

ls ('./d')

% Assignment operator following white space
% Interpretation: assignment to a variable
ls =d

% Operator following white space, followed in turn by
% more white space and a variable
% Interpretation: elementwise division
ls ./ d

What Happens When You Call a Function
When you call a function M-file from either the command line or from within
another M-file, MATLAB parses the function into pseudocode and stores it
in memory. This prevents MATLAB from having to reparse a function each
time you call it during a session. The pseudocode remains in memory until
you clear it using the clear function, or until you quit MATLAB.

Clearing Functions from Memory
You can use clear in any of the following ways to remove functions from the
MATLAB workspace.

Syntax Description

clear functionname Remove specified function from workspace.
clear functions Remove all compiled M-functions.
clear all Remove all variables and functions.

Determining Which Function Gets Called
When more than one function has the same name, which one does MATLAB
call? This section explains the process that MATLAB uses to make this
decision. It covers the following topics:

• “Function Scope” on page 3-35

• “Function Precedence Order” on page 3-35

• “Multiple Implementation Types” on page 3-37

3-34

Calling Functions

• “Querying Which Function Gets Called” on page 3-37

Keep in mind that there are certain situations in which function names
can conflict with variables of the same name. See “Potential Conflict with
Function Names” on page 2-14 for more information.

Function Scope
Any functions you call must first be within the scope of (i.e., visible to) the
calling function or your MATLAB session. MATLAB determines if a function
is in scope by searching for the function’s executable file according to a certain
order (see Function Precedence Order, below).

One key part of this search order is the MATLAB path. The path is an
ordered list of directories that MATLAB defines on startup. You can add or
remove any directories you want from the path. MATLAB searches the path
for the given function name, starting at the first directory in the path string
and continuing until either the function file is found or the list of directories
is exhausted. If no function of that name is found, then the function is
considered to be out of scope and MATLAB issues an error.

Function Precedence Order
The function precedence order determines the precedence of one function
over another based on the type of function and its location on the MATLAB
path. MATLAB selects the correct function for a given context by applying the
following function precedence rules in the order given here.

For items 3 through 7 in this list, the file MATLAB searches for can be any
of four types: an M- or built-in file, preparsed M-file (P-Code), compiled C
or Fortran file (MEX-file), or Simulink® model (MDL-file). See “Multiple
Implementation Types” on page 3-37 for more on this.

1 Variable

Before assuming that a name should match a function, MATLAB checks
the current workspace to see if it matches a variable name. If MATLAB
finds a match, it stops the search.

2 Subfunction

3-35

3 Functions and Scripts

Subfunctions take precedence over all other M-file functions and overloaded
methods that are on the path and have the same name. Even if the function
is called with an argument of type matching that of an overloaded method,
MATLAB uses the subfunction and ignores the overloaded method.

3 Private function

Private functions are called if there is no subfunction of the same name
within the current scope. As with subfunctions, even if the function is
called with an argument of type matching that of an overloaded method,
MATLAB uses the private function and ignores the overloaded method.

4 Class constructor

Constructor functions (functions having names that are the same as the @
directory, for example @polynom/polynom.m) take precedence over other
MATLAB functions. Therefore, if you create an M-file called polynom.m and
put it on your path before the constructor @polynom/polynom.m version,
MATLAB will always call the constructor version.

5 Overloaded method

MATLAB calls an overloaded method if it is not superseded by a
subfunction or private function. Which overloaded method gets called
depends on the classes of the objects passed in the argument list.

6 Function in the current directory

A function in the current working directory is selected before one elsewhere
on the path.

7 Function elsewhere on the path

Finally, a function elsewhere on the path is selected. A function in a
directory that is toward the beginning of the path string is given higher
precedence.

Note Because variables have the highest precedence, if you have created a
variable of the same name as a function, MATLAB will not be able to run that
function until you clear the variable from memory.

3-36

Calling Functions

Multiple Implementation Types
There are five file precedence types. MATLAB uses file precedence to select
between identically named functions in the same directory. The order of
precedence for file types is

1 Built-in file

2 MEX-files

3 MDL (Simulink® model) file

4 P-code file

5 M-file

For example, if MATLAB finds a P-code and an M-file version of a method in a
class directory, then the P-code version is used. It is, therefore, important to
regenerate the P-code version whenever you edit the M-file.

Querying Which Function Gets Called
You can determine which function MATLAB will call using the which
command. For example,

which pie3
matlabroot/toolbox/matlab/specgraph/pie3.m

However, if p is a portfolio object,

which pie3(p)
dir_on_your_path/@portfolio/pie3.m % portfolio method

The which command determines which version of pie3 MATLAB will call
if you passed a portfolio object as the input argument. To see a list of all
versions of a particular function that are on your MATLAB path, use the -all
option. See the which reference page for more information on this command.

Calling External Functions
The MATLAB external interface offers a number of ways to run external
functions from MATLAB. This includes programs written in C or Fortran,

3-37

3 Functions and Scripts

methods invoked on Sun Java or COM (Component Object Model) objects,
functions that interface with serial port hardware, and functions stored in
shared libraries. The MATLAB External Interfaces documentation describes
these various interfaces and how to call these external functions.

Running External Programs
For information on how to invoke operating systems commands or execute
programs that are external to MATLAB, see Running External Programs in
the MATLAB Desktop Tools and Development documentation.

3-38

Function Arguments

Function Arguments

In this section...

“Overview” on page 3-39
“Passing Certain Argument Types” on page 3-39
“Passing Arguments in Structures or Cell Arrays” on page 3-41
“Assigning Output Arguments” on page 3-43
“Checking the Number of Input Arguments” on page 3-45
“Passing Variable Numbers of Arguments” on page 3-47
“Parsing Inputs with inputParser” on page 3-50
“Passing Optional Arguments to Nested Functions” on page 3-61
“Returning Modified Input Arguments” on page 3-64

Overview
When calling a function, the caller provides the function with any data it
needs by passing the data in an argument list. Data that needs to be returned
to the caller is passed back in a list of return values.

Semantically speaking, the MATLAB software always passes argument
data by value. (Internally, MATLAB optimizes away any unnecessary copy
operations.)

If you pass data to a function that then modifies this data, you will need to
update your own copy of the data. You can do this by having the function
return the updated value as an output argument.

Passing Certain Argument Types
This section explains how to pass the following types of data in a function call:

• “Passing Strings” on page 3-40

• “Passing Filenames” on page 3-40

• “Passing Function Handles” on page 3-41

3-39

3 Functions and Scripts

Passing Strings
When using the function syntax to pass a string literal to a function, you
must enclose the string in single quotes, ('string'). For example, to create a
new directory called myapptests, use

mkdir('myapptests')

On the other hand, variables that contain strings do not need to be enclosed
in quotes:

dirname = 'myapptests';
mkdir(dirname)

Passing Filenames
You can specify a filename argument using the MATLAB command or
function syntax. For example, either of the following are acceptable. (The
.mat file extension is optional for save and load):

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax:

savedData = load('mydata.mat')

Specify ASCII files as shown here. In this case, the file extension is required:

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time. There are several ways that your
function code can work on specific files without your having to hardcode their
filenames into the program. You can

• Pass the filename as an argument:

function myfun(datafile)

• Prompt for the filename using the input function:

filename = input('Enter name of file: ', 's');

3-40

Function Arguments

• Browse for the file using the uigetfile function:

[filename, pathname] = uigetfile('*.mat', 'Select MAT-file');

Passing Function Handles
The MATLAB function handle has several uses, the most common being
a means of immediate access to the function it represents. You can pass
function handles in argument lists to other functions, enabling the receiving
function to make calls by means of the handle.

To pass a function handle, include its variable name in the argument list of
the call:

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The receiving function invokes the function being passed using the usual
MATLAB calling syntax:

function [xf, fval, exitflag, output] = ...
fminbnd(fhandle, ax, bx, options, varargin)

.

.

.
113 fx = fhandle(x, varargin{:});

Passing Arguments in Structures or Cell Arrays
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure or cell array.

Passing Arguments in a Structure
Make each input you want to pass a separate field in the structure argument,
using descriptive names for the fields. Structures allow you to change the
number, contents, or order of the arguments without having to modify the
function. They can also be useful when you have a number of functions that
need similar information.

3-41

3 Functions and Scripts

This example updates weather statistics from information in the following
chart.

City Temp. Heat Index Wind Speed Wind Chill

Boston 43 32 8 37
Chicago 34 27 3 30

Lincoln 25 17 11 16
Denver 15 -5 9 0
Las Vegas 31 22 4 35
San Francisco 52 47 18 42

The information is stored in structure W. The structure has one field for each
column of data:

W = struct('city', {'Bos','Chi','Lin','Dnv','Vgs','SFr'}, ...
'temp', {43, 34, 25, 15, 31, 52}, ...
'heatix', {32, 27, 17, -5, 22, 47}, ...
'wspeed', {8, 3, 11, 9, 4, 18}, ...
'wchill', {37, 30, 16, 0, 35, 42});

To update the data base, you can pass the entire structure, or just one
field with its associated data. In the call shown here, W.wchill is a
comma-separated list:

updateStats(W.wchill);

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The advantage over structures
is that cell arrays are referenced by index, allowing you to loop through a
cell array and access each argument passed in or out of the function. The
disadvantage is that you don’t have field names to describe each variable.

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

3-42

Function Arguments

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Assigning Output Arguments
Use the syntax shown here to store any values that are returned by the
function you are calling. To store one output, put the variable that is to hold
that output to the left of the equal sign:

vout = myfun(vin1, vin2, ...);

To store more than one output, list the output variables inside square
brackets and separate them with commas or spaces:

[vout1 vout2 ...] = myfun(vin1, vin2, ...);

The number of output variables in your function call statement does not have
to match the number of return values declared in the function being called.
For a function that declares N return values, you can specify anywhere from
zero to N output variables in the call statement. Any return values that you
do not have an output variable for are discarded.

Functions return output values in the order in which the corresponding
output variables appear in the function definition line within the M-file. This
function returns 100 first, then x * y, and lastly x.^2:

function [a b c] = myfun(x, y)
b = x * y; a = 100; c = x.^2;

If called with only one output variable in the call statement, the function
returns only 100 and discards the values of b and c. If called with no outputs,
the functions returns 100 in the MATLAB default variable ans.

Assigning Optional Return Values
The section “Passing Variable Numbers of Arguments” on page 3-47 describes
the method of returning optional outputs in a cell array called varargout.

3-43

3 Functions and Scripts

A function that uses varargout to return optional values has a function
definition line that looks like one of the following:

function varargout = myfun(vin1, vin2, ...)
function [vout1 vout2 ... varargout] = myfun(vin1, vin2, ...)

The code within the function builds the varargout cell array. The content and
order of elements in the cell array determines how MATLAB assigns optional
return values to output variables in the function call.

In the case where varargout is the only variable shown to the left of the
equal sign in the function definition line, MATLAB assigns varargout{1} to
the first output variable, varargout{2} to the second, and so on. If there are
other outputs declared in the function definition line, then MATLAB assigns
those outputs to the leftmost output variables in the call statement, and then
assigns outputs taken from the varargout array to the remaining output
variables in the order just described.

This function builds the varargout array using descending rows of a 5-by-5
matrix. The function is capable of returning up to six outputs:

function varargout = byRow(a)
varargout{1} = ' With VARARGOUT constructed by row ...';
for k = 1:5

row = 5 - (k-1); % Reverse row order
varargout{k+1} = a(row,:);

end

Call the function, assigning outputs to four variables. MATLAB returns
varargout{1:4}, with rows of the matrix in varargout{2:4} and in the order
in which they were stored by the function:

[text r1 r2 r3] = byRow(magic(5))
text =

With VARARGOUT constructed by row ...
r1 =

11 18 25 2 9
r2 =

10 12 19 21 3
r3 =

4 6 13 20 22

3-44

Function Arguments

A similar function builds the varargout array using diagonals of a 5-by-5
matrix:

function varargout = byDiag(a)
varargout{1} = ' With VARARGOUT constructed by diagonal ...';
for k = -4:4

varargout{k + 6} = diag(a, k);
end

Call the function with five output variables. Again, MATLAB assigns
elements of varargout according to the manner in which it was constructed
within the function:

[text d1 d2 d3 d4] = byDiag(magic(5))
text =

With VARARGOUT constructed by diagonal ...
d1 =

11
d2 =

10
18

d3 =
4

12
25

d4 =
23
6

19
2

Checking the Number of Input Arguments
The nargin and nargout functions enable you to determine how many input
and output arguments a function is called with. You can then use conditional
statements to perform different tasks depending on the number of arguments.
For example,

function c = testarg1(a, b)
if (nargin == 1)

c = a .^ 2;

3-45

3 Functions and Scripts

elseif (nargin == 2)
c = a + b;

end

Given a single input argument, this function squares the input value. Given
two inputs, it adds them together.

Here is a more advanced example that finds the first token in a character
string. A token is a set of characters delimited by white space or some other
character. Given one input, the function assumes a default delimiter of white
space; given two, it lets you specify another delimiter if desired. It also allows
for two possible output argument lists:

function [token, remainder] = strtok(string, delimiters)
% Function requires at least one input argument
if nargin < 1

error('Not enough input arguments.');
end
token = []; remainder = [];
len = length(string);
if len == 0

return
end

% If one input, use white space delimiter
if (nargin == 1)

delimiters = [9:13 32]; % White space characters
end
i = 1;

% Determine where nondelimiter characters begin
while (any(string(i) == delimiters))

i = i + 1;
if (i > len), return, end

end

% Find where token ends
start = i;
while (~any(string(i) == delimiters))

i = i + 1;

3-46

Function Arguments

if (i > len), break, end
end
finish = i - 1;
token = string(start:finish);

% For two output arguments, count characters after
% first delimiter (remainder)
if (nargout == 2)

remainder = string(finish+1:end);
end

The strtok function is a MATLAB M-file in the strfun directory.

Note The order in which output arguments appear in the function declaration
line is important. The argument that the function returns in most cases
appears first in the list. Additional, optional arguments are appended to
the list.

Passing Variable Numbers of Arguments
The varargin and varargout functions let you pass any number of inputs
or return any number of outputs to a function. This section describes how to
use these functions and also covers

• “Unpacking varargin Contents” on page 3-48

• “Packing varargout Contents” on page 3-48

• “varargin and varargout in Argument Lists” on page 3-49

MATLAB packs all specified input arguments into a cell array, a special kind
of MATLAB array that consists of cells instead of array elements. Each cell
can hold any size or kind of data — one might hold a vector of numeric data,
another in the same array might hold an array of string data, and so on. For
output arguments, your function code must pack them into a cell array so that
MATLAB can return the arguments to the caller.

Here is an example function that accepts any number of two-element vectors
and draws a line to connect them:

3-47

3 Functions and Scripts

function testvar(varargin)
for k = 1:length(varargin)

x(k) = varargin{k}(1); % Cell array indexing
y(k) = varargin{k}(2);

end
xmin = min(0,min(x));
ymin = min(0,min(y));
axis([xmin fix(max(x))+3 ymin fix(max(y))+3])
plot(x,y)

Coded this way, the testvar function works with various input lists; for
example,

testvar([2 3],[1 5],[4 8],[6 5],[4 2],[2 3])
testvar([-1 0],[3 -5],[4 2],[1 1])

Unpacking varargin Contents
Because varargin contains all the input arguments in a cell array, it’s
necessary to use cell array indexing to extract the data. For example,

y(n) = varargin{n}(2);

Cell array indexing has two subscript components:

• The indices within curly braces {} specify which cell to get the contents of.

• The indices within parentheses () specify a particular element of that cell.

In the preceding code, the indexing expression {i} accesses the nth cell of
varargin. The expression (2) represents the second element of the cell
contents.

Packing varargout Contents
When allowing a variable number of output arguments, you must pack all of
the output into the varargout cell array. Use nargout to determine how
many output arguments the function is called with. For example, this code
accepts a two-column input array, where the first column represents a set of x
coordinates and the second represents y coordinates. It breaks the array into

3-48

Function Arguments

separate [xi yi] vectors that you can pass into the testvar function shown
at the beginning of the section on “Passing Variable Numbers of Arguments”
on page 3-47:

function [varargout] = testvar2(arrayin)
for k = 1:nargout

varargout{k} = arrayin(k,:); % Cell array assignment
end

The assignment statement inside the for loop uses cell array assignment
syntax. The left side of the statement, the cell array, is indexed using curly
braces to indicate that the data goes inside a cell. For complete information
on cell array assignment, see the documentation on Cell Arrays

To call testvar2, type

a = [1 2; 3 4; 5 6; 7 8; 9 0];

[p1, p2, p3, p4, p5] = testvar2(a)
p1 =

1 2
p2 =

3 4
p3 =

5 6
p4 =

7 8
p5 =

9 0

varargin and varargout in Argument Lists
varargin or varargout must appear last in the argument list, following any
required input or output variables. That is, the function call must specify the
required arguments first. For example, these function declaration lines show
the correct placement of varargin and varargout:

function [out1,out2] = example1(a,b,varargin)
function [i,j,varargout] = example2(x1,y1,x2,y2,flag)

3-49

3 Functions and Scripts

Parsing Inputs with inputParser
MATLAB provides a class called inputParser to handle the different types
of arguments passed into an M-file function. Using inputParser, you create
a schema that both represents and verifies the content of the entire list of
input arguments passed on a call to the function. When used in all of your
code development, this schema offers a consistent and thorough means of
managing and validating the input information.

This section covers the following topics

• “Defining a Specification for Each Input Parameter” on page 3-51

• “Parsing Parameter Values on the Function Call” on page 3-53

• “Packaging Arguments in a Structure” on page 3-54

• “Arguments That Default” on page 3-56

• “Validating the Input Arguments” on page 3-57

• “Making a Copy of the Schema” on page 3-59

• “Summary of inputParser Methods” on page 3-59

• “Summary of inputParser Properties that Control Parsing” on page 3-60

• “Summary of inputParser Properties that Provide Information” on page
3-60

To illustrate how to use the inputParser class, the documentation in this
section develops a new M-file program called publish_ip, (based on the
MATLAB publish function). There are three calling syntaxes for this
function:

publish_ip('scriptfile')
publish_ip('scriptfile', 'format')
publish_ip('scriptfile', options)

There is one required argument (scriptfile), one optional argument
(format), and a number of optional arguments that are specified as
parameter-value pairs (options).

3-50

Function Arguments

Defining a Specification for Each Input Parameter
Most programs have a block of code toward the beginning that parses the
values in the input argument list and checks these values against what is
expected. The inputParser class provides the following methods with which
you can specify what the inputs are and whether they are required, optional,
or to be specified using the parameter-value syntax:

• addRequired— Add a required parameter to the schema

• addOptional— Add an optional parameter to the schema

• addParamValue— Add an optional parameter-value pair to the schema

Creating the inputParser Object. Call the class constructor for
inputParser to create an instance of the class. This class instance, or object,
gives you access to all of the methods and properties of the class.

Begin writing the example publish_ip M-file by entering the following two
statements:

function x = publish_ip(scriptfile, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, use the addRequired, addOptional, and
addParamValue methods to add arguments to the schema.

Note The constructor and all methods and properties of the inputParser
class are case sensitive.

Adding Arguments to the Schema. Add any required arguments to the
schema using the addRequired method. This method takes two inputs: the
name of the required parameter, and an optional handle to a function that
validates the parameter:

addRequired(name, validator);

Put an addRequired statement at the end of your publish_ip code. The two
arguments for addRequired in this case are a parameter name script to
represent the filename input, and a handle to a function that will validate the

3-51

3 Functions and Scripts

filename, ischar. After adding the addRequired statement, your publish_ip
function should now look like this:

function x = publish_ip(scriptfile, varargin)
p = inputParser; % Create an instance of the class.

p.addRequired('script', @ischar);

Use the addOptional method to add any arguments that are not required.
The syntax for addOptional is similar to that of addRequired except that
you also need to specify a default value to be used whenever the optional
argument is not passed:

addOptional(name, default, validator);

Add the following statement to your publish_ip M-file. In this case, the
validator input is a handle to an anonymous function:

p.addOptional('format', 'html', ...
@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));

Use addParamValue to specify any arguments that use a parameter-value
format. The syntax is

addParamValue(name, default, validator);

Add the following code to your publish_ip M-file:

p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Listing the Parameters. At this point, the schema is complete. Here is
the file publish_ip.m:

function x = publish_ip(scriptfile, varargin)
p = inputParser; % Create an instance of the class.

p.addRequired('script', @ischar);

p.addOptional('format', 'html', ...
@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));

3-52

Function Arguments

p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

When you call the program, MATLAB stores the name of each argument in
the Parameters property of object p. Add the following statement to your
publish_ip M-file to display p.Parameters:

disp 'The input parameters for this program are'
disp(p.Parameters)

Save the M-file, and then run it as shown here:

publish_ip('ipscript.m', 'ppt', 'outputDir', ...
'C:/matlab/test', 'maxWidth', 500, 'maxHeight', 300);

The output is

The input parameters for this program are
'format' 'maxHeight' 'maxWidth' 'outputDir' 'script'

Parsing Parameter Values on the Function Call
Once you have constructed a schema that represents all possible inputs
to the function, the next task is to write the code that parses and verifies
these arguments whenever the function is called. The parse method of the
inputParser class reads and validates the required scriptfile argument
and any optional arguments that follow it in the argument list:

p.parse(scriptfile, varargin{:});

Execution of the parse method validates each argument and also builds a
structure from the input arguments. The name of the structure is Results,
which is accessible as a property of the object. To get the value of all
arguments, type

p.Results

To get the value of any single input argument, type

3-53

3 Functions and Scripts

p.Results.argname

where argname is the name of the argument. Continue with the publish_ip
exercise started earlier in this section by removing the two disp statements
that were inserted in the last section, and then adding the following lines:

% Parse and validate all input arguments.
p.parse(scriptfile, varargin{:});

% Display the value of a specific argument.
disp' '
fprintf('\nThe maximum height is %d.\n', ...

p.Results.maxHeight)

% Display all arguments.
disp ' '
disp 'List of all arguments:'
disp(p.Results)

Now save and execute the M-file, passing the required script file argument,
the optional format argument, as well as several parameter-value arguments.
MATLAB assigns those values you pass in the argument list to the
appropriate fields of the Results structure:

publish_ip('ipscript.m', 'ppt', 'outputDir', ...
'C:/matlab/test', 'maxWidth', 500, 'maxHeight', 300);

The maximum height is 300.

List of all arguments:
format: 'ppt'

maxHeight: 300
maxWidth: 500

outputDir: 'C:/matlab/test'
script: 'ipscript.m'

Packaging Arguments in a Structure
By setting the StructExpand property of the inputParser object to true, you
can pass arguments to your function in the form of a structure instead of

3-54

Function Arguments

individually in the argument list. This property must be set prior to calling
the parse method.

StructExpand defaults to the true state, so you don’t have to make any
changes to your test program to run this example.

Put all of the input arguments into a structure:

s.format = 'xml';
s.outputDir = 'C:/matlab/test';
s.maxWidth = 200;
s.maxHeight = 150;

Now call the function, passing the filename and input structure:

publish_ip('ipscript.m', s);

The maximum height is 150.

List of all arguments:
format: 'xml'

maxHeight: 150
maxWidth: 200

outputDir: 'C:/matlab/test'
script: 'ipscript.m'

To disable struct expansion, you can include the following statement
somewhere in your program code before the p.parse statement:

p.StructExpand = false;

For this example however, leave the StructExpand in its default true state.

Overriding the Input Structure. If you want to pass your argument list
in a structure, as described in the previous section, but you also want to
alter the value of one or more of these arguments without having to modify
the structure, you can do so by passing both the structure and the modified
argument:

publish_ip('ipscript.m', s, ...
'outputDir', 'C:/matlab/R2007a/temp');

3-55

3 Functions and Scripts

List of all arguments:
format: 'xml'

maxHeight: 150
maxWidth: 200

outputDir: 'C:/matlab/R2007a/temp'
script: 'ipscript.m'

Arguments That Default
Any arguments that you do not include in a call to your function are given
their default values by MATLAB. You defined these default values when you
created your schema using the addOptional and addParamValue methods.
The UsingDefaults property is a cell array that contains the names of any
arguments that were not passed in the function call, and thus were assigned
default values.

In your example M-file, remove or comment out the lines that display the
maximum height and the list of all arguments, and add the following lines in
their place:

% Show which arguments were not specified in the call.
disp' '
disp 'List of arguments given default values:'
for k=1:numel(p.UsingDefaults)

field = char(p.UsingDefaults(k));
value = p.Results.(field);
if isempty(value), value = '[]'; end
disp(sprintf(' ''%s'' defaults to %s', field, value))

end

Save the M-file and run it without specifying the format, outputDir, or
maxHeight arguments:

publish_ip('ipscript.m', 'maxWidth', 500);

List of arguments given default values:
'format' defaults to html
'outputDir' defaults to D:\matlabtest
'maxHeight' defaults to []

3-56

Function Arguments

Note that outputDir defaults to your current working directory, as specified
near the beginning of your example M-file in the statement

p.addParamValue('outputDir', pwd, @ischar);

Validating the Input Arguments
When you call your function, MATLAB checks any arguments for which you
have specified a validator function. If the validator finds an error, MATLAB
displays an error message and aborts the function. In the publish function
example, the outputDir argument validates the value passed in using
@ischar.

Pass a number instead of a string for the outputDir argument:

publish_ip('ipscript.m', 'outputDir', 5);
??? Error using ==> publish_ip at 14
Argument 'outputDir' failed validation ischar.

Handling Unmatched Arguments. MATLAB throws an error if you call
your function with any arguments that are not part of the inputParser
schema. You can disable this error by setting the KeepUnmatched property to
true. When KeepUnmatched is in the true state, MATLAB does not throw
an error, but instead stores any arguments that are not in the schema in a
cell array of strings accessible through the Unmatched property of the object.
KeepUnmatched defaults to false.

In your publish_ip M-file, remove or comment out all of the code that follows
the p.addParamValue statements, and add the following code in its place:

p.KeepUnmatched = true;

% Parse and validate all input arguments.
p.parse(scriptfile, varargin{:});

disp ' '
disp 'List of unmatched arguments:'
disp(p.Unmatched)

3-57

3 Functions and Scripts

Save and run the function, passing two arguments that are not defined in
the schema:

publish_ip('ipscript.m', s, ...
'outputDir', 'C:/matlab/R2007a/temp', ...
'colorSpace', 'CMYK', 'density', 200);

List of unmatched arguments:
colorSpace: 'CMYK'

density: 200

Enabling Case-Sensitive Matching. When you pass optional arguments
in the function call, MATLAB compares these arguments with the names of
parameter-value argument names in the schema. By default, MATLAB does
not use case sensitivity in this comparison. So, an argument name entered
into the schema (using addParamValue) as maxHeight will match an argument
passed as MAXHeight in the function call. You can override the default
and make these comparisons case sensitive by setting the CaseSensitive
property of the object to true. MATLAB does not error on a case mismatch,
however, unless the KeepUnmatched property is set to false: its default state.

At some point in your publish_ip M-file before executing the parse method,
set KeepUnmatched to false and CaseSensitive to true. You can also remove
the statements that display the list of unmatched arguments. Now execute
the publish_ip function using MAXHeight as the name of the argument for
specifying maximum height:

p.KeepUnmatched = false;
p.CaseSensitive = true;

% Parse and validate all input arguments.
p.parse(scriptfile, varargin{:});

Save and run the function, using MAXHeight as the name of the argument for
specifying maximum height:

publish_ip('ipscript.m', 'ppt', 'outputDir', ...
'C:/matlab/test', 'maxWidth', 500, 'MAXHeight', 300);

??? Error using ==> publish_ip at 17
Argument 'MaxHeight' did not match any valid parameter of the parser.

3-58

Function Arguments

Adding the Function Name to Error Messages. Use the FunctionName
property to include the name of your function in error messages thrown by
the validating function:

At some point in your publish_ip M-file before executing the parse method,
set the FunctionName property to PUBLISH_IP, and then run the function:

p.FunctionName = 'PUBLISH_IP';

% Parse and validate all input arguments.
p.parse(scriptfile, varargin{:});

Save and run the function and observe text of the error message:

publish_ip('ipscript.m', 'ppt', 'outputDir', 5, ...
'maxWidth', 500, 'maxHeight', 300);

??? Error using ==> PUBLISH_IP
Argument 'outputDir' failed validation ischar.

Making a Copy of the Schema
The createCopy method enables you to make a copy of an existing schema.
Because the inputParser class uses handle semantics, you cannot make a
copy of the object using an assignment statement.

The following statement creates an inputParser object s that is a copy of p:

s = p.createCopy

Summary of inputParser Methods

Method Description

addOptional Add an optional argument to the schema
addParamValue Add a parameter-value pair argument to the

schema
addRequired Add a required argument to the schema

3-59

3 Functions and Scripts

Method Description

createCopy Create a copy of the inputParser object
parse Parse and validate the named inputs

Summary of inputParser Properties that Control Parsing

Property Description

CaseSensitivity Enable or disable case-sensitive matching of
argument names. Defaults to false.

FunctionName Function name to be included in error messages.
Defaults to an empty string.

KeepUnmatched Enable or disable errors on unmatched
arguments. Defaults to false.

StructExpand Enable or disable passing arguments in a
structure. Defaults to true.

Summary of inputParser Properties that Provide Information

Property Description

Parameters Names of arguments defined in inputParser
schema.

Results Names and values of arguments passed in
function call that are in the schema for this
function.

Unmatched Names and values of arguments passed in
function call that are not in the schema for this
function.

UsingDefaults Names of arguments not passed in function call
that are given default values.

3-60

Function Arguments

Passing Optional Arguments to Nested Functions
You can use optional input and output arguments with nested functions,
but you should be aware of how MATLAB interprets varargin, varargout,
nargin, and nargout under those circumstances.

varargin and varargout are variables and, as such, they follow exactly the
same scoping rules as any other MATLAB variable. Because nested functions
share the workspaces of all outer functions, varargin and varargout used in
a nested function can refer to optional arguments passed to or from the nested
function, or passed to or from one of its outer functions.

nargin and nargout, on the other hand, are functions and when called within
a nested function, always return the number of arguments passed to or from
the nested function itself.

Using varargin and varargout
varargin or varargout used in a nested function can refer to optional
arguments passed to or from that function, or to optional arguments passed
to or from an outer function.

• If a nested function includes varargin or varargout in its function
declaration line, then the use of varargin or varargout within that
function returns optional arguments passed to or from that function.

• If varargin or varargout are not in the nested function declaration but
are in the declaration of an outer function, then the use of varargin or
varargout within the nested function returns optional arguments passed
to the outer function.

In the example below, function C is nested within function B, and function B is
nested within function A. The term varargin{1} in function B refers to the
second input passed to the primary function A, while varargin{1} in function
C refers to the first argument, z, passed from function B:

function x = A(y, varargin) % Primary function A
B(nargin, y * rand(4))

function B(argsIn, z) % Nested function B
if argsIn >= 2

C(z, varargin{1}, 4.512, 1.729)

3-61

3 Functions and Scripts

end

function C(varargin) % Nested function C
if nargin >= 2

x = varargin{1}
end
end % End nested function C

end % End nested function B
end % End primary function A

Using nargin and nargout
When nargin or nargout appears in a nested function, it refers to the number
of inputs or outputs passed to that particular function, regardless of whether
or not it is nested.

In the example shown above, nargin in function A is the number of inputs
passed to A, and nargin in function C is the number of inputs passed to C. If a
nested function needs the value of nargin or nargout from an outer function,
you can pass this value in as a separate argument, as done in function B.

Example of Passing Optional Arguments to Nested Functions
This example references the primary function’s varargin cell array from
each of two nested functions. (Because the workspace of an outer function is
shared with all functions nested within it, there is no need to pass varargin
to the nested functions.)

Both nested functions make use of the nargin value that applies to the
primary function. Calling nargin from the nested function would return the
number of inputs passed to that nested function, and not those that had been
passed to the primary. For this reason, the primary function must pass its
nargin value to the nested functions.

function meters = convert2meters(miles, varargin)
% Converts MILES (plus optional FEET and INCHES input)
% values to METERS.

if nargin < 1 || nargin > 3
error('1 to 3 input arguments are required');

3-62

Function Arguments

end

function feet = convert2Feet(argsIn)
% Nested function that converts miles to feet and adds in
% optional FEET argument.

feet = miles .* 5280;

if argsIn >= 2
feet = feet + varargin{1};

end
end % End nested function convert2Feet

function inches = convert2Inches(argsIn)
% Nested function that converts feet to inches and adds in
% optional INCHES argument.

inches = feet .* 12;

if argsIn == 3
inches = inches + varargin{2};

end
end % End nested function convert2Inches

feet = convert2Feet(nargin);
inches = convert2Inches(nargin);

meters = inches .* 2.54 ./ 100;
end % End primary function convert2meters

convert2meters(5)
ans =

8.0467e+003

convert2meters(5, 2000, 4.7)
ans =

8.6564e+003

3-63

3 Functions and Scripts

Returning Modified Input Arguments
If you pass any input variables that the function can modify, you will need to
include the same variables as output arguments so that the caller receives
the updated value.

For example, if the function readText, shown below, reads one line of a file
each time is it called, then it must keep track of the offset into the file. But
when readText terminates, its copy of the offset variable is cleared from
memory. To keep the offset value from being lost, readText must return
this value to the caller:

function [text, offset] = readText(filestart, offset)

3-64

4

Types of Functions

• “Overview of MATLAB Function Types” on page 4-2

• “Anonymous Functions” on page 4-3

• “Primary M-File Functions” on page 4-15

• “Nested Functions” on page 4-16

• “Subfunctions” on page 4-33

• “Private Functions” on page 4-35

• “Overloaded Functions” on page 4-37

4 Types of Functions

Overview of MATLAB Function Types
There are essentially two ways to create a new function for your MATLAB
application: in a command entered at run-time, or in a file saved to permanent
storage.

The command-oriented function, called an anonymous function, is relatively
brief in its content. It consists of a single MATLAB statement that can
interact with multiple input and output arguments. The benefit of using
anonymous functions is that you do not have to edit and maintain a file for
functions that require only a brief definition.

There are several types of functions that are stored in files (called M-files).
The most basic of these are primary functions and subfunctions. Primary
functions are visible to other functions outside of their M-file, while
subfunctions, generally speaking, are not. That is, you can call a primary
function from an anonymous function or from a function defined in a separate
M-file, whereas you can call a subfunction only from functions within the
same M-file. (See the Description section of the function_handle reference
page for information on making a subfunction externally visible.)

Two specific types of primary M-file functions are the private and overloaded
function. Private functions are visible only to a limited group of other
functions. This type of function can be useful if you want to limit access to a
function, or when you choose not to expose the implementation of a function.
Overloaded functions act the same way as overloaded functions in most
computer languages. You can create multiple implementations of a function
so that each responds accordingly to different types of inputs.

The last type of MATLAB function is the nested function. Nested functions
are not an independent function type; they exist within the body of one of the
other types of functions discussed here (with the exception of anonymous
functions), and also within other nested functions.

4-2

Anonymous Functions

Anonymous Functions

In this section...

“Constructing an Anonymous Function” on page 4-3
“Arrays of Anonymous Functions” on page 4-6
“Outputs from Anonymous Functions” on page 4-7
“Variables Used in the Expression” on page 4-8
“Examples of Anonymous Functions” on page 4-11

Constructing an Anonymous Function
Anonymous functions give you a quick means of creating simple functions
without having to create M-files each time. You can construct an anonymous
function either at the MATLAB command line or in any M-file function or
script.

The syntax for creating an anonymous function from an expression is

fhandle = @(arglist) expr

Starting from the right of this syntax statement, the term expr represents the
body of the function: the code that performs the main task your function is to
accomplish. This consists of any single, valid MATLAB expression. Next is
arglist, which is a comma-separated list of input arguments to be passed to
the function. These two components are similar to the body and argument list
components of any function.

Leading off the entire right side of this statement is an @ sign. The @ sign is
the MATLAB operator that constructs a function handle. Creating a function
handle for an anonymous function gives you a means of invoking the function.
It is also useful when you want to pass your anonymous function in a call to
some other function. The @ sign is a required part of an anonymous function
definition.

4-3

4 Types of Functions

Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see “Function Handles” on page 1-126 in
the Programming Fundamentals documentation.

The syntax statement shown above constructs the anonymous function,
returns a handle to this function, and stores the value of the handle in
variable fhandle. You can use this function handle in the same way as any
other MATLAB function handle.

Simple Example
The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and assigns the
handle to the output variable sqr. As with any function handle, you execute
the function associated with it by specifying the variable that contains the
handle, followed by a comma-separated argument list in parentheses. The
syntax is

fhandle(arg1, arg2, ..., argN)

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Because sqr is a function handle, you can pass it in an argument list to other
functions. The code shown here passes the sqr anonymous function to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =

4-4

Anonymous Functions

0.3333

A Two-Input Example
As another example, you could create the following anonymous function that
uses two input arguments, x and y. (The example assumes that variables A
and B are already defined):

sumAxBy = @(x, y) (A*x + B*y);

whos sumAxBy
Name Size Bytes Class

sumAxBy 1x1 16 function_handle

To call this function, assigning 5 to x and 7 to y, type

sumAxBy(5, 7)

Evaluating With No Input Arguments
For anonymous functions that do not take any input arguments, construct the
function using empty parentheses for the input argument list:

t = @() datestr(now);

Also use empty parentheses when invoking the function:

t()

ans =
04-Sep-2003 10:17:59

You must include the parentheses. If you type the function handle name
with no parentheses, MATLAB just identifies the handle; it does not execute
the related function:

t

t =
@() datestr(now)

4-5

4 Types of Functions

Arrays of Anonymous Functions
To store multiple anonymous functions in an array, use a cell array. The
example shown here stores three simple anonymous functions in cell array A:

A = {@(x)x.^2, @(y)y+10, @(x,y)x.^2+y+10}
A =

[@(x)x.^2] [@(y)y+10] [@(x,y)x.^2+y+10]

Execute the first two functions in the cell array by referring to them with the
usual cell array syntax, A{1} and A{2}:

A{1}(4) + A{2}(7)
ans =

33

Do the same with the third anonymous function that takes two input
arguments:

A{3}(4, 7)
ans =

33

Space Characters in Anonymous Function Elements
Note that while using space characters in the definition of any function can
make your code easier to read, spaces in the body of an anonymous function
that is defined in a cell array can sometimes be ambiguous to MATLAB. To
ensure accurate interpretation of anonymous functions in cell arrays, you
can do any of the following:

• Remove all spaces from at least the body (not necessarily the argument
list) of each anonymous function:

A = {@(x)x.^2, @(y)y+10, @(x, y)x.^2+y+10};

• Enclose in parentheses any anonymous functions that include spaces:

A = {(@(x)x .^ 2), (@(y) y +10), (@(x, y) x.^2 + y+10)};

• Assign each anonymous function to a variable, and use these variable
names in creating the cell array:

4-6

Anonymous Functions

A1 = @(x)x .^ 2; A2 = @(y) y +10; A3 = @(x, y)x.^2 + y+10;
A = {A1, A2, A3};

Outputs from Anonymous Functions
As with other MATLAB functions, the number of outputs returned by an
anonymous function depends mainly on how many variables you specify to
the left of the equals (=) sign when you call the function.

For example, consider an anonymous function getPersInfo that returns a
person’s address, home phone, business phone, and date of birth, in that order.
To get someone’s address, you can call the function specifying just one output:

address = getPersInfo(name);

To get more information, specify more outputs:

[address, homePhone, busPhone] = getPersInfo(name);

Of course, you cannot specify more outputs than the maximum number
generated by the function, which is four in this case.

Example
The anonymous getXLSData function shown here calls the MATLAB xlsread
function with a preset spreadsheet filename (records.xls) and a variable
worksheet name (worksheet):

getXLSData = @(worksheet) xlsread('records.xls', worksheet);

The records.xls worksheet used in this example contains both numeric and
text data. The numeric data is taken from instrument readings, and the text
data describes the category that each numeric reading belongs to.

Because the MATLAB xlsread function is defined to return up to three
values (numeric, text, and raw data), getXLSData can also return this same
number of values, depending on how many output variables you specify to the
left of the equals sign in the call. Call getXLSData a first time, specifying
only a single (numeric) output, dNum:

dNum = getXLSData('Week 12');

4-7

4 Types of Functions

Display the data that is returned using a for loop. You have to use generic
names (v1, v2, v3) for the categories, due to the fact that the text of the real
category names was not returned in the call:

for k = 1:length(dNum)
disp(sprintf('%s v1: %2.2f v2: %d v3: %d', ...

datestr(clock, 'HH:MM'), dNum(k,1), dNum(k,2), ...
dNum(k,3)));

end

Here is the output from the first call:

12:55 v1: 78.42 v2: 32 v3: 37
13:41 v1: 69.73 v2: 27 v3: 30
14:26 v1: 77.65 v2: 17 v3: 16
15:10 v1: 68.19 v2: 22 v3: 35

Now try this again, but this time specifying two outputs, numeric (dNum)
and text (dTxt):

[dNum, dTxt] = getXLSData('Week 12');

for k = 1:length(dNum)
disp(sprintf('%s %s: %2.2f %s: %d %s: %d', ...

datestr(clock, 'HH:MM'), dTxt{1}, dNum(k,1), ...
dTxt{2}, dNum(k,2), dTxt{3}, dNum(k,3)));

end

This time, you can display the category names returned from the spreadsheet:

12:55 Temp: 78.42 HeatIndex: 32 WindChill: 37
13:41 Temp: 69.73 HeatIndex: 27 WindChill: 30
14:26 Temp: 77.65 HeatIndex: 17 WindChill: 16
15:10 Temp: 68.19 HeatIndex: 22 WindChill: 35

Variables Used in the Expression
Anonymous functions commonly include two types of variables:

• Variables specified in the argument list. These often vary with each
function call.

4-8

Anonymous Functions

• Variables specified in the body of the expression. MATLAB captures these
variables and holds them constant throughout the lifetime of the function
handle.

The latter variables must have a value assigned to them at the time you
construct an anonymous function that uses them. Upon construction,
MATLAB captures the current value for each variable specified in the body
of that function. The function will continue to associate this value with the
variable even if the value should change in the workspace or go out of scope.

The fact that MATLAB captures the values of these variables when the
handle to the anonymous function is constructed enables you to execute an
anonymous function from anywhere in the MATLAB environment, even
outside the scope in which its variables were originally defined. But it also
means that to supply new values for any variables specified within the
expression, you must reconstruct the function handle.

Changing Variables Used in an Anonymous Function
The second statement shown below constructs a function handle for an
anonymous function called parabola that uses variables a, b, and c in the
expression. Passing the function handle to the MATLAB fplot function plots
it out using the initial values for these variables:

a = 1.3; b = .2; c = 30;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

4-9

4 Types of Functions

If you change the three variables in the workspace and replot the figure, the
parabola remains unchanged because the parabola function is still using the
initial values of a, b, and c:

a = -3.9; b = 52; c = 0;
fplot(parabola, [-25 25])

4-10

Anonymous Functions

To get the function to use the new values, you need to reconstruct the function
handle, causing MATLAB to capture the updated variables. Replot using the
new construct, and this time the parabola takes on the new values:

a = -3.9; b = 52; c = 0;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

For the purposes of this example, there is no need to store the handle to the
anonymous function in a variable (parabola, in this case). You can just
construct and pass the handle right within the call to fplot. In this way, you
update the values of a, b, and c on each call:

fplot(@(x) a*x.^2 + b*x + c, [-25 25])

Examples of Anonymous Functions
This section shows a few examples of how you can use anonymous functions.
These examples are intended to show you how to program with this type of
function. For more mathematically oriented examples, see the MATLAB
Mathematics documentation.

The examples in this section include

4-11

4 Types of Functions

• “Example 1 — Passing a Function to quad” on page 4-12

• “Example 2 — Multiple Anonymous Functions” on page 4-13

Example 1 — Passing a Function to quad
The equation shown here has one variable t that can vary each time you call
the function, and two additional variables, g and omega. Leaving these two
variables flexible allows you to avoid having to hardcode values for them in
the function definition:

x = g * cos(omega * t)

One way to program this equation is to write an M-file function, and then
create a function handle for it so that you can pass the function to other
functions, such as the MATLAB quad function as shown here. However, this
requires creating and maintaining a new M-file for a purpose that is likely to
be temporary, using a more complex calling syntax when calling quad, and
passing the g and omega parameters on every call. Here is the function M-file:

function f = vOut(t, g, omega)
f = g * cos(omega * t);

This code has to specify g and omega on each call:

g = 2.5; omega = 10;

quad(@vOut, 0, 7, [], [], g, omega)
ans =

0.1935

quad(@vOut, -5, 5, [], [], g, omega)
ans =

-0.1312

You can simplify this procedure by setting the values for g and omega just
once at the start, constructing a function handle to an anonymous function
that only lasts the duration of your MATLAB session, and using a simpler
syntax when calling quad:

g = 2.5; omega = 10;

4-12

Anonymous Functions

quad(@(t) (g * cos(omega * t)), 0, 7)
ans =

0.1935

quad(@(t) (g * cos(omega * t)), -5, 5)
ans =

-0.1312

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT-file

save anon.mat f

and then load it into the MATLAB workspace in a later session:

load anon.mat f

Example 2 — Multiple Anonymous Functions
This example solves the following equation by combining two anonymous
functions:

The equivalent anonymous function for this expression is

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

This was derived as follows. Take the parenthesized part of the equation (the
integrand) and write it as an anonymous function. You don’t need to assign
the output to a variable as it will only be passed as input to the quad function:

@(x) (x.^2 + c*x + 1)

Next, evaluate this function from zero to one by passing the function handle,
shown here as the entire anonymous function, to quad:

quad(@(x) (x.^2 + c*x + 1), 0, 1)

4-13

4 Types of Functions

Supply the value for c by constructing an anonymous function for the entire
equation and you are done:

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

g(2)
ans =

2.3333

4-14

Primary M-File Functions

Primary M-File Functions
The first function in any M-file is called the primary function. Following the
primary function can be any number of subfunctions, which can serve as
subroutines to the primary function.

Under most circumstances, the primary function is the only function in an
M-file that you can call from the MATLAB command line or from another
M-file function. You invoke this function using the name of the M-file in
which it is defined.

For example, the average function shown here resides in the file average.m:

function y = average(x)
% AVERAGE Mean of vector elements.

y = sum(x)/length(x); % Actual computation

You can invoke this function from the MATLAB command line with this
command to find the average of three numbers:

average([12 60 42])

Note that it is customary to give the primary function the same name as the
M-file in which it resides. If the function name differs from the filename, then
you must use the filename to invoke the function.

4-15

4 Types of Functions

Nested Functions

In this section...

“Writing Nested Functions” on page 4-16
“Calling Nested Functions” on page 4-18
“Variable Scope in Nested Functions” on page 4-19
“Using Function Handles with Nested Functions” on page 4-21
“Restrictions on Assigning to Variables” on page 4-26
“Examples of Nested Functions” on page 4-27

Writing Nested Functions
You can define one or more functions within another function in your
MATLAB application. These inner functions are said to be nested within
the function that contains them. You can also nest functions within other
nested functions. You cannot however define a nested function inside any of
the MATLAB program control statements. This includes any block of code
that is controlled by an if, else, elseif, switch, for, while, try, or catch
statement.

To write a nested function, simply define one function within the body of
another function in an M-file. Like any M-file function, a nested function
contains any or all of the components described in “Basic Parts of an M-File”
on page 3-8 in the Programming Fundamentals documentation. In addition,
you must always terminate a nested function with an end statement:

function x = A(p1, p2)
...

function y = B(p3)
...
end

...
end

4-16

Nested Functions

Note M-file functions don’t normally require a terminating end statement.
This rule does not hold, however, when you nest functions. If an M-file
contains one or more nested functions, you must terminate all functions
(including subfunctions) in the M-file with end, whether or not they contain
nested functions.

Example — More Than One Nested Function
This example shows function A and two additional functions nested inside A
at the same level:

function x = A(p1, p2)
...

function y = B(p3)
...
end

function z = C(p4)
...
end

...
end

Example — Multiply Nested Functions
This example shows multiply nested functions, C nested inside B, and B in A:

function x = A(p1, p2)
...

function y = B(p3)
...

function z = C(p4)
...
end

...
end

...
end

4-17

4 Types of Functions

Calling Nested Functions
You can call a nested function

• From the level immediately above it. (In the following code, function A can
call B or D, but not C or E.)

• From a function nested at the same level within the same parent function.
(Function B can call D, and D can call B.)

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Primary function
B(x, y);
D(y);

function B(x, y) % Nested in A
C(x);
D(y);

function C(x) % Nested in B
D(x);
end

end

function D(x) % Nested in A
E(x);

function E(x) % Nested in D
...
end

end
end

You can also call a subfunction from any nested function in the same M-file.

You can pass variable numbers of arguments to and from nested
functions, but you should be aware of how MATLAB interprets varargin,
varargout, nargin, and nargout under those circumstances. See "Passing
Optional Arguments to Nested Functions" in the MATLAB Programming
Fundamentals documentation for more information on this.

4-18

Nested Functions

Note If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle.
See “Using Function Handles with Nested Functions” on page 4-21.

Nested functions are not accessible to the str2func or feval function. You
cannot call a nested function using a handle that has been constructed with
str2func. And, you cannot call a nested function by evaluating the function
name with feval. To call a nested function, you must either call it directly by
name, or construct a function handle for it using the @ operator.

Variable Scope in Nested Functions
The scope of a variable is the range of functions that have direct access to the
variable to set, modify, or acquire its value. When you define a local (i.e.,
nonglobal) variable within a function, its scope is normally restricted to that
function alone. For example, subfunctions do not share variables with the
primary function or with other subfunctions. This is because each function
and subfunction stores its variables in its own separate workspace.

Like other functions, a nested function has its own workspace. But it also has
access to the workspaces of all functions in which it is nested. So, for example,
a variable that has a value assigned to it by the primary function can be read
or overwritten by a function nested at any level within the primary. Similarly,
a variable that is assigned in a nested function can be read or overwritten by
any of the functions containing that function.

In the following two examples, variable x is stored in the workspace of the
outer varScope function and can be read or written to by all functions nested
within it.

4-19

4 Types of Functions

function varScope1
x = 5;
nestfun1

function nestfun1
nestfun2

function nestfun2
x = x + 1

end
end

end

function varScope2
nestfun1

function nestfun1
nestfun2

function nestfun2
x = 5;

end
end

x = x + 1
end

As a rule, a variable used or defined within a nested function resides in the
workspace of the outermost function that both contains the nested function
and accesses that variable. The scope of this variable is then the function to
which this workspace belongs, and all functions nested to any level within
that function.

In the next example, the outer function, varScope3, does not access variable
x. Following the rule just stated, x is unknown to the outer function and
thus is not shared between the two nested functions. In fact, there are
two separate x variables in this example: one in the function workspace of
nestfun1 and one in the function workspace of nestfun2. When nestfun2
attempts to update x, it fails because x does not yet exist in this workspace:

function varScope3
nestfun1
nestfun2

function nestfun1
x = 5;

end

function nestfun2
x = x + 1

end
end

4-20

Nested Functions

The Scope of Output Variables
Variables containing values returned by a nested function are not in the scope
of outer functions. In the two examples shown here, the one on the left fails
in the second to last line because, although the value of y is returned by the
nested function, the variable y is local to the nested function, and unknown to
the outer function. The example on the right assigns the return value to a
variable, z, and then displays the value of z correctly.

Incorrect Correct

function varScope4
x = 5; nestfun;

function y = nestfun
y = x + 1;

end

y
end

function varScope5
x = 5;
z = nestfun;

function y = nestfun
y = x + 1;

end

z
end

Using Function Handles with Nested Functions
Every function has a certain scope, that is, a certain range of other functions
to which it is visible. A function’s scope determines which other functions can
call it. You can call a function that is out of scope by providing an alternative
means of access to it in the form of a function handle. (The function handle,
however, must be within the scope of its related function when you construct
the handle.) Any function that has access to a function handle can call the
function with which the handle is associated.

Note Although you can call an out of scope function by means of a function
handle, the handle itself must be within the scope of its related function at
the time it is constructed.

The section on “Calling Nested Functions” on page 4-18 defines the scope of
a nested function. As with other types of functions, you can make a nested
function visible beyond its normal scope with a function handle. The following
function getCubeHandle constructs a handle for nested function findCube

4-21

4 Types of Functions

and returns its handle, h, to the caller. The @ sign placed before a function
name (e.g., @findCube) is the MATLAB operator that constructs a handle
for that function:

function h = getCubeHandle
h = @findCube; % Function handle constructor

function cube = findCube(X) % Nested function
cube = X .^ 3;

end
end

Call getCubeHandle to obtain the function handle to the nested function
findCube. Assign the function handle value returned by getCubeHandle to an
output variable, cubeIt in this case:

cubeIt = getCubeHandle;

You can now use this variable as a means of calling findCube from outside
of its M-file:

cubeIt(8)
ans =

512

Note When calling a function by means of its handle, use the same syntax
as if you were calling a function directly. But instead of calling the function
by its name (e.g., strcmp(S1, S2)), use the variable that holds the function
handle (e.g., fhandle(S1, S2)).

Function Handles and Nested Function Variables
One characteristic of nested functions that makes them different from
other MATLAB functions is that they can share nonglobal variables with
certain other functions within the same M-file. A nested function nFun can
share variables with any outer function that contains nFun, and with any
function nested within nFun. This characteristic has an impact on how certain
variables are stored when you construct a handle for a nested function.

4-22

Nested Functions

Defining Variables When Calling Via Function Handle. The example
below shows a primary function getHandle that returns a function handle for
the nested function nestFun. The nestFun function uses three different types
of variables. The VLoc variable is local to the nested function, VInp is passed in
when the nested function is called, and VExt is defined by the outer function:

function h = getHandle(X)
h = @nestFun;
VExt = someFun(X);

function nestFun(VInp)
VLoc = 173.5;
doSomeTask(VInp, VLoc, VExt);
end

end

As with any function, when you call nestFun, you must ensure that you
supply the values for any variables it uses. This is a straightforward matter
when calling the nested function directly (that is, calling it from getHandle).
VLoc has a value assigned to it within nestFun, VInp has its value passed in,
and VExt acquires its value from the workspace it shares with getHandle.

However, when you call nestFun using a function handle, only the nested
function executes; the outer function, getHandle, does not. It might seem at
first that the variable VExt, otherwise given a value by getHandle, has no
value assigned to it in the case. What in fact happens though is that MATLAB
stores variables such as VExt inside the function handle itself when it is being
constructed. These variables are available for as long as the handle exists.

The VExt variable in this example is considered to be externally scoped with
respect to the nested function. Externally scoped variables that are used in
nested functions for which a function handle exists are stored within the
function handle. So, function handles not only contain information about
accessing a function. For nested functions, a function handle also stores the
values of any externally scoped variables required to execute the function.

Example Using Externally Scoped Variables
The sCountFun and nCountFun functions shown below return function handles
for subfunction subCount and nested function nestCount, respectively.

4-23

4 Types of Functions

These two inner functions store a persistent value in memory (the value is
retained in memory between function calls), and then increment this value
on every subsequent call. subCount makes its count value persistent with
an explicit persistent declaration. In nestCount, the count variable is
externally scoped and thus is maintained in the function handle:

Using a Subfunction Using a Nested Function

function h = sCountFun(X)
h = @subCount;
count = X
subCount(0, count);
function subCount(incr, ini)
persistent count;
initializing = nargin > 1;
if initializing

count = ini; else
count = count + incr

end

function h = nCountFun(X)
h = @nestCount;
count = X

function nestCount(incr)
count = count + incr

end
end

When sCountFun executes, it passes the initial value for count to the
subCount subfunction. Keep in mind that the count variable in sCountFun is
not the same as the count variable in subCount; they are entirely independent
of each other. Whenever subCount is called via its function handle, the value
for count comes from its persistent place in memory.

In nestCount, the count variable again gets its value from the primary
function when called from within the M-file. However, in this case the count
variable in the primary and nested functions are one and the same. When
nestCount is called by means of its function handle, the value for count is
assigned from its storage within the function handle.

Running the Example. The subCount and nestCount functions increment a
value in memory by another value that you pass as an input argument. Both
of these functions give the same results.

Get the function handle to nestCount, and initialize the count value to a
four-element vector:

h = nCountFun([100 200 300 400])

4-24

Nested Functions

count =
100 200 300 400

Increment the persistent vector by 25, and then by 42:

h(25)
count =

125 225 325 425

h(42)
count =

167 267 367 467

Now do the same using sCountFun and subCount, and verify that the results
are the same.

Note If you construct a new function handle to subCount or nestCount, the
former value for count is no longer retained in memory. It is replaced by
the new value.

Separate Instances of Externally Scoped Variables
The code shown below constructs two separate function handles to the same
nested function, nestCount, that was used in the last example. It assigns
the handles to fields counter1 and counter2 of structure s. These handles
reference different instances of the nestCount function. Each handle also
maintains its own separate value for the externally scoped count variable.

Call nCountFun twice to get two separate function handles to nestCount.
Initialize the two instances of count to two different vectors:

s.counter1 = nCountFun([100 200 300 400]);
count =

100 200 300 400

s.counter2 = nCountFun([-100 -200 -300 -400]);
count =

-100 -200 -300 -400

4-25

4 Types of Functions

Now call nestCount by means of each function handle to demonstrate that
MATLAB increments the two count variables individually.

Increment the first counter:

s.counter1(25)
count =

125 225 325 425
s.counter1(25)
count =

150 250 350 450

Now increment the second counter:

s.counter2(25)
count =

-75 -175 -275 -375
s.counter2(25)
count =

-50 -150 -250 -350

Go back to the first counter and you can see that it keeps its own value for
count:

s.counter1(25)
count =

175 275 375 475

Restrictions on Assigning to Variables
The scoping rules for nested, and in some cases anonymous, functions require
that all variables used within the function be present in the text of the M-file
code. Adding variables to the workspace of this type of function at run time is
not allowed.

MATLAB issues an error if you attempt to dynamically add a variable to the
workspace of an anonymous function, a nested function, or a function that
contains a nested function. Examples of operations that might use dynamic
assignment in this way are shown in the table below.

4-26

Nested Functions

Type of Operation
How to Avoid Using Dynamic
Assignment

Evaluating an expression using
eval or evalin, or assigning a
variable with assignin

As a general suggestion, it is best to avoid
using the eval, evalin, and assignin
functions altogether.

Loading variables from a
MAT-file with the load function

Use the form of load that returns a
MATLAB structure.

Assigning to a variable in a
MATLAB script

Convert the script to a function, where
argument- and result-passing can often
clarify the code as well.

Assigning to a variable in the
MATLAB debugger

You can declare the variable to be
global. For example, to create a variable
X for temporary use in debugging, use

K>> global X; X = value

One way to avoid this error in the other cases is to pre-declare the variable in
the desired function.

Examples of Nested Functions
This section shows a few examples of how you can use nested functions. These
examples are intended to show you how to program with this type of function.
For more mathematically oriented examples, see the MATLAB Mathematics
documentation.

The examples in this section include

• “Example 1 — Creating a Function Handle for a Nested Function” on page
4-27

• “Example 2 — Function-Generating Functions” on page 4-29

Example 1 — Creating a Function Handle for a Nested Function
The following example constructs a function handle for a nested function and
then passes the handle to the MATLAB fplot function to plot the parabola

4-27

4 Types of Functions

shape. The makeParabola function shown here constructs and returns a
function handle fhandle for the nested parabola function. This handle gets
passed to fplot:

function fhandle = makeParabola(a, b, c)
% MAKEPARABOLA returns a function handle with parabola
% coefficients.

fhandle = @parabola; % @ is the function handle constructor

function y = parabola(x)
y = a*x.^2 + b*x + c;
end

end

Assign the function handle returned from the call to a variable (h) and
evaluate the function at points 0 and 25:

h = makeParabola(1.3, .2, 30)
h =

@makeParabola/parabola

h(0)
ans =

30

h(25)
ans =

847.5000

4-28

Nested Functions

Now pass the function handle h to the fplot function, evaluating the
parabolic equation from x = -25 to x = +25:

fplot(h, [-25 25])

Example 2 — Function-Generating Functions
The fact that a function handle separately maintains a unique instance of the
function from which it is constructed means that you can generate multiple
handles for a function, each operating independently from the others. The
function in this example makes IIR filtering functions by constructing
function handles from nested functions. Each of these handles maintains its
own internal state independent of the others.

The function makeFilter takes IIR filter coefficient vectors a and b and
returns a filtering function in the form of a function handle. Each time a new
input value xn is available, you can call the filtering function to get the new
output value yn. Each filtering function created by makeFilter keeps its own
private a and b vectors, in addition to its own private state vector, in the form
of a transposed direct form II delay line:

function [filtfcn, statefcn] = makeFilter(b, a)
% FILTFCN = MAKEFILTER(B, A) creates an IIR filtering
% function and returns it in the form of a function handle,

4-29

4 Types of Functions

% FILTFCN. Each time you call FILTFCN with a new filter
% input value, it computes the corresponding new filter
% output value, updating its internal state vector at the
% same time.
%
% [FILTFCN, STATEFCN] = MAKEFILTER(B, A) also returns a
% function (in the form of a function handle, STATEFCN)
% that can return the filter's internal state. The internal
% state vector is in the form of a transposed direct form
% II delay line.

% Initialize state vector. To keep this example a bit
% simpler, assume that a and b have the same length.
% Also assume that a(1) is 1.

v = zeros(size(a));

filtfcn = @iirFilter;
statefcn = @getState;

function yn = iirFilter(xn)
% Update the state vector
v(1) = v(2) + b(1) * xn;
v(2:end-1) = v(3:end) + b(2:end-1) * xn - ...

a(2:end-1) * v(1);
v(end) = b(end) * xn - a(end) * v(1);

% Output is the first element of the state vector.
yn = v(1);

end

function vOut = getState
vOut = v;

end
end

This sample session shows how makeFilter works. Make a filter that has
a decaying exponential impulse response and then call it a few times in
succession to see the output values change:

4-30

Nested Functions

[filt1, state1] = makeFilter([1 0], [1 -.5]);

% First input to the filter is 1.
filt1(1)
ans =

1

% Second input to the filter is 0.
filt1(0)
ans =

0.5000

filt1(0)
ans =

0.2500

% Show the filter's internal state.
state1()
ans =

0.2500 0.1250

% Hit the filter with another impulse.
filt1(1)
ans =

1.1250

% How did the state change?
state1()
ans =

1.1250 0.5625

% Make an averaging filter.
filt2 = makeFilter([1 1 1]/3, [1 0 0]);

% Put a step input into filt2.
filt2(1)
ans =

0.3333

filt2(1)

4-31

4 Types of Functions

ans =
0.6667

filt2(1)
ans =

1

% The two filter functions can be used independently.
filt1(0)
ans =

0.5625

As an extension of this example, suppose you were looking for a way to
develop simulations of different filtering structures and compare them. This
might be useful if you were interested in obtaining the range of values taken
on by elements of the state vector, and how those values compare with a
different filter structure. Here is one way you could capture the filter state at
each step and save it for later analysis:

Call makeFilter with inputs v1 and v2 to construct function handles to the
iirFilter and getState subfunctions:

[filtfcn, statefcn] = makeFilter(v1, v2);

Call the iirFilter and getState functions by means of their handles,
passing in random values:

x = rand(1, 20);
for k = 1:20

y(k) = filtfcn(x(k));
states{k} = statefcn(); % Save the state at each step.

end

4-32

Subfunctions

Subfunctions

In this section...

“Overview” on page 4-33
“Calling Subfunctions” on page 4-34
“Accessing Help for a Subfunction” on page 4-34

Overview
M-files can contain code for more than one function. Additional functions
within the file are called subfunctions, and these are only visible to the
primary function or to other subfunctions in the same file.

Each subfunction begins with its own function definition line. The functions
immediately follow each other. The various subfunctions can occur in any
order, as long as the primary function appears first:

function [avg, med] = newstats(u) % Primary function
% NEWSTATS Find mean and median with internal functions.
n = length(u);
avg = mean(u, n);
med = median(u, n);

function a = mean(v, n) % Subfunction
% Calculate average.
a = sum(v)/n;

function m = median(v, n) % Subfunction
% Calculate median.
w = sort(v);
if rem(n, 2) == 1

m = w((n+1) / 2);
else

m = (w(n/2) + w(n/2+1)) / 2;
end

4-33

4 Types of Functions

The subfunctions mean and median calculate the average and median of the
input list. The primary function newstats determines the length of the list
and calls the subfunctions, passing to them the list length n.

Subfunctions cannot access variables used by other subfunctions, even within
the same M-file, or variables used by the primary function of that M-file,
unless you declare them as global within the pertinent functions, or pass
them as arguments.

Calling Subfunctions
When you call a function from within an M-file, MATLAB first checks the file
to see if the function is a subfunction. It then checks for a private function
(described in the following section) with that name, and then for a standard
M-file or built-in function on your search path. Because it checks for a
subfunction first, you can override existing M-files using subfunctions with
the same name.

Accessing Help for a Subfunction
You can write help for subfunctions using the same rules that apply to
primary functions. To display the help for a subfunction, precede the
subfunction name with the name of the M-file that contains the subfunction
(minus file extension) and a > character.

For example, to get help on subfunction mysubfun in file myfun.m, type

help myfun>mysubfun

4-34

Private Functions

Private Functions

In this section...

“Overview” on page 4-35
“Private Directories” on page 4-35
“Accessing Help for a Private Function” on page 4-36

Overview
Private functions are functions that reside in subdirectories with the special
name private. These functions are called private because they are visible
only to M-file functions and M-file scripts that meet these conditions:

• A function that calls a private function must be defined in an M-file that
resides in the directory immediately above that private subdirectory.

• A script that calls a private function must itself be called from an M-file
function that has access to the private function according to the above rule.

For example, assume the directory newmath is on the MATLAB search path. A
subdirectory of newmath called private can contain functions that only the
functions in newmath can call.

Because private functions are invisible outside the parent directory, they can
use the same names as functions in other directories. This is useful if you
want to create your own version of a particular function while retaining the
original in another directory. Because MATLAB looks for private functions
before standard M-file functions, it will find a private function named test.m
before a nonprivate M-file named test.m.

Primary functions and subfunctions can also be implemented as private
functions.

Private Directories
You can create your own private directories simply by creating subdirectories
called private using the standard procedures for creating directories or
folders on your computer. Do not place these private directories on your path.

4-35

4 Types of Functions

Accessing Help for a Private Function
You can write help for private functions using the same rules that apply to
primary functions. To display the help for a private function, precede the
private function name with private/.

For example, to get help on private function myprivfun, type

help private/myprivfun

4-36

Overloaded Functions

Overloaded Functions
Overloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. For instance, you might
want one of your functions to accept both double-precision and integer input,
but to handle each type somewhat differently. You can make this difference
invisible to the user by creating two separate functions having the same
name, and designating one to handle double types and one to handle integers.

MATLAB overloaded functions reside in subdirectories having a name
starting with the symbol @ and followed by the name of a recognized MATLAB
class. For example, functions in the \@double directory execute when invoked
with arguments of MATLAB type double. Those in an \@int32 directory
execute when invoked with arguments of MATLAB type int32.

See “Overloading MATLAB Functions” for more information on overloading
functions in MATLAB.

4-37

4 Types of Functions

4-38

5

Using Objects

• “MATLAB Objects” on page 5-2

• “General Purpose Vs. Specialized Arrays” on page 5-5

• “Key Object Concepts” on page 5-8

• “Creating Objects” on page 5-11

• “Accessing Object Data” on page 5-14

• “Calling Object Methods” on page 5-16

• “Desktop Tools Are Object Aware” on page 5-19

• “Getting Information About Objects” on page 5-21

• “Copying Objects” on page 5-26

• “Destroying Objects” on page 5-31

5 Using Objects

MATLAB Objects

In this section...

“What Are Objects?” on page 5-2
“Objects In the MATLAB Language” on page 5-3
“Other Kinds of Objects Used by MATLAB” on page 5-3

What Are Objects?
This chapter provides information for people using objects. It does not provide
a thorough treatment of object-oriented concepts, but instead focuses on what
you need to know to use the objects provided with MATLAB.

If you are interested in object-oriented programming in the MATLAB
language, see Object-Oriented Programming. For background information on
objects, see object-oriented design.

In the simplest sense, objects are special-purpose variables. Objects differ
from general-purpose variables in that they define the operations you can
perform on the data they contain. These operations create an interface with
which you interact with the object, without needing to know how operations
are implemented or how data is stored. This makes objects modular and easy
to pass within application programs. It also isolates your code from changes
to the object’s design and implementation.

In a more general sense, objects are organized collections of data and functions
that have been designed for specific purposes. For example, an object might
be designed to contain time series data that consists of value/time-sample
pairs and associated information like units, sample uniformity, and so on.
This object could have a set of specific operations designed to perform analysis
that is relevant to this particular type of data. The following sections provide
examples of such objects.

Accessing Objects
You access an object with its variable name. Interacting with objects variables
in MATLAB software is really no different from interacting with any other
variables. Basically, you can perform the same common operations on

5-2

http://en.wikipedia.org/wiki/Object-oriented_design

MATLAB® Objects

variables whether they hold numbers or specialized objects. For example, you
can do the following things with objects:

• Create it and assigned a variable name so you can reference it again

• Assign or reassign data to it (see “Accessing Object Data” on page 5-14)

• Operate on its data (see “Calling Object Methods” on page 5-16)

• Convert it to another class (if this operation is supported by the object’s
class)

• Save it to a MAT-file so you can reload it later (see save)

• Copy it (see “Copying Objects” on page 5-26)

• Clear it from the workspace (clear)

Any particular object might have restrictions on how you create it, access its
data, or what operations you can perform on it. Refer to the documentation
for the particular MATLAB object for a description of what you can do with
that object.

See “Variables” on page 2-9 for a general discussion of MATLAB variables.

Objects In the MATLAB Language
The MATLAB language uses many specialized objects. For example, timer
objects execute code at a certain time interval, MException objects capture
information when errors occur, the serial object enables you to communicate
with devices connected to your computer’s serial port, and so on. MATLAB
toolboxes often define objects to manage the specific data and analyses
performed by the toolbox.

All of these objects are designed to provide specific functionality that is not as
conveniently available from general purpose language components.

Other Kinds of Objects Used by MATLAB
The MATLAB language enables you to use other kinds of objects in your
MATLAB programs. The following objects are different from the MATLAB
objects described in this documentation. See the individual sections
referenced below for information on using these objects.

5-3

5 Using Objects

• Handle Graphics® objects represent objects used to create graphs and
GUIs. These objects provide a set/get interface to property values, but
are not extensible by subclassing. See “Handle Graphics Objects” for more
information.

• Sun Java objects can be used in MATLAB code enabling you to access the
capabilities of Java classes. See “Using Sun Java Classes in MATLAB
Software” for more information.

• Microsoft COM objects enable you to integrate these software components
into your application. See “COM Support for MATLAB Software” for more
information.

• User-defined MATLAB objects created prior to Version 7.6 used different
syntax for class definition (no classdef block) and exhibit other differences.
See “Compatibility with Previous Versions ” for more information.

5-4

General Purpose Vs. Specialized Arrays

General Purpose Vs. Specialized Arrays

In this section...

“How They Differ” on page 5-5
“Using General-Purpose Variables” on page 5-5
“Using Specialized Objects” on page 5-6

How They Differ
The MATLAB language enables you to use both general-purpose and
specialized arrays. For example, numeric multidimensional arrays and
structures provide general-purpose data storage. You typically extract data
from the array and perform operations (e.g., mathematical analysis) on this
data, and then store the data back in general-purpose variables.

When using a specialized object, you typically pass the object’s data to a
function that creates the object. Once you have created the object, you use
specially defined functions to operate on the data. These functions are unique
to the object and are designed specifically for the type and structure of the
data contained by the object.

Using General-Purpose Variables
A commonly used general-purpose variable is a structure array. For example,
these statements create a MATLAB struct (a MATLAB structure array):

s.Data = rand(10,1);
s.Time = .01:.01:.1;
s.Name = 'Data1';
s.Units = 'seconds;

The structure s contains two arrays of numbers. However, s is a generic
variable in the sense that MATLAB does not define special functions to
operate on the data in this particular structure. For example, while s contains
two fields, Data and Time, that would be useful to plot, you cannot pass s
to the plot function:

plot(s)

5-5

5 Using Objects

??? Error using ==> plot
Not enough input arguments.

While s certainly has enough information to create a plot of Data versus Time,
plot cannot access this data because structures like s can contain any values
in its fields and the fields can have any name. Just because one field is named
Data does not force you to assign data to that field.

To plot the data in s, you would have to extract the data from the fields, pass
them as arguments in the desired order to the plot function, add a title,
labels, and so on:

plot(s.Time,s.Data)
title(['Time Series Plot: ' s.Name])
xlabel(['Time (' s.Units ')'])
ylabel(s.Name)

You could create a function to perform these steps for you. Other programs
using the structure s would need to create their own functions or access the
one you created.

Using Specialized Objects
Compare the structure array above to an object that has been specifically
designed to contain and manipulate time series data. For example, the
following statement creates a MATLAB timeseries object. It is initialized to
store the same data as structure s above:

tsobj = timeseries(rand(10,1),.01:.01:.1,'Name','Data1');

The function that creates the object tsobj, accepts sample data, sample
times, a property name/property value pair (Name/Data1), and uses a default
value of Units (which is seconds).

The designer of this object created a special version of the plot function that
works directly with this object. For example:

plot(tsobj)

5-6

General Purpose Vs. Specialized Arrays

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

D
at

a1

Time Series Plot:Data1

Notice how the object’s plot function creates a graph that is plotted and
labeled with the data from the tsobj object. As a user of this object, you do
not need write your own code to produce this graph. The class design specifies
the standard way to present graphs of timeseries data and all clients of this
object use the same code for plotting.

See “Time Series Objects” for more on using MATLAB timeseries objects.

5-7

5 Using Objects

Key Object Concepts

In this section...

“Basic Concepts” on page 5-8
“Classes Describe How to Create Objects” on page 5-8
“Properties Contain Data” on page 5-8
“Methods Implement Operations” on page 5-9

Basic Concepts
There are some basic concepts that are fundamental to objects. Objects
represent something in the real world, like an error condition or the set
of data you collected in a product test. Objects enable you to do something
useful, like provide an error report or analyze and present the results of tests.

This section introduces the basic components that MATLAB uses to realize
the design of an object. These components include:

• Classes

• Properties

• Methods

Classes Describe How to Create Objects
A class defines a set of similar objects. It is a description from which MATLAB
creates a particular instance of the class, and it is the instance (that is, the
object) that contains actual data. Therefore, while there is a timeseries
class, you work with timeseries objects.

Classes are defined in code files — either as separate M-files or built-in to the
MATLAB executable. Objects are specific representations of a class that you
access through workspace variables.

Properties Contain Data
Objects store data in properties. Consider a timeseries object as an example.
A timeseries object stores data values, associated time values, and also

5-8

Key Object Concepts

related information, such as units, events, data quality, and interpolation
method. All this data is stored in various object properties. MATLAB objects
enable you to access property data directly (see “Accessing Object Data” on
page 5-14 for information on property syntax).

Properties are sometimes called fields in other programming languages and
are similar to the fields of MATLAB structures. Properties have descriptive
names, such as Data and DataInfo, in the case of timeseries objects, and
can contain any kind of MATLAB data, including other objects.

An object, then, is a container for a predefined set of data. Unlike a cell array
or structure, you cannot add new properties or delete defined properties
from an object. Doing so would compromise the object’s intended purpose
and violate the class design.

The class design can restrict the values you can assign to a property. For
example, a Length property might restrict possible values to positive integers
or might be read only and determine its own value when queried.

Methods Implement Operations
Class methods are functions designed to work with objects of a particular
class. Methods enable the class designer to implement specific operations that
are optimized for the data contained in the object. You do not have to extract
the data from the object, modify its format, and pass it to a general-purpose
MATLAB function because the class defines methods with an awareness of
the object’s structure.

Methods can define operations that are unique to a particular class of object,
such as adding a data sample to an existing set of time series data, or can
overload common operations in a way that makes sense for the particular
object. For example, timeseries objects have an addsample method to add
a new data sample to an existing timeseries object. Also, timeseries
overloads the MATLAB plot function to work with timeseries objects.

MATLAB software determines which overloaded version of a method to call
based on the class of the object passed as an argument. If you execute a
MATLAB statement like:

tsobjnew = tsobj1 + tsobj2;

5-9

5 Using Objects

where tsobj1 and tsobj2 are timeseries objects, MATLAB calls the
timeseries version of the + operation (if defined) and returns a new
timeseries object.

Because the timeseries class defines the operation, you can add a
timeseries object to a scalar number:

tsobjnew = tsobj1 + 4;

The class definition determines what happens when you add a scalar double
to a timeseries object (the scalar is added to each Data value).

Methods make working with objects convenient for the user, but also provide
advantages to the class designer. Methods hide implementation details from
users—you do not need to create your own functions to access and manipulate
data, as you would when using general-purpose data structures like structs
and cell arrays. This provides the flexibility to change the internal design
of an object without affecting object clients (i.e., application programs that
use the objects).

5-10

Creating Objects

Creating Objects

In this section...

“Class Constructor” on page 5-11
“When to Use Package Names” on page 5-11

Class Constructor
Usually, you create an object by calling a function designed for the purpose of
creating that specific class of object. For example, the following code creates a
timeseries object and assigns it to the variable tsboj:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24,'Name','Data1');

The timeseries method creates an object and initializes its data with the
values specified as arguments. Classes that create objects define a special
method whose purpose is to create objects of the class. This function has the
same name as the class and is called the class constructor.

However, in some cases, you might create objects by calling other functions or
even using a GUI. For example, a try-catch block can return an MException
object that contains information about a specific error condition. In this case,
you do not explicitly create the object, rather it is returned by the catch
statement (see “Accessing Object Data” on page 5-14 for an example).

When to Use Package Names
A package is a container that provides a logical grouping for class and function
definitions. The class and function names within a given package must be
unique, but can be reused in other packages. Packages are directories that
begin with the + character.

If a package directory contains a class definition, then you must use the
package name when calling the class constructor. For example, this statement
creates a Map object, whose class definition file is in a directory in the
containers package:

mapobj = containers.Map({'rose','bicycle'},{'flower','machine'});

5-11

5 Using Objects

You need to use the package name to refer to:

• Class constructors (e.g., containers.Map), which you call to create an object

• Static methods (methods that do not require an object of the class as an
argument)

• Package functions (functions defined in the package)

However, because MATLAB uses the class of an object to determine which
ordinary method to call, you do not need to use the package name in
conjunction with object references. For example, suppose you have the
following directory structure:

pathdirectory/+packagename/@ClassName/ClassName.m
pathdirectory/+packagename/@ClassName/staticMethodName.m
pathdirectory/+packagename/functionName.m

In the following examples, obj is the object you are creating.

% Create object of ClassName
obj = packagename.ClassName(...);

% Call methodName
obj.methodName(...);

% Set or get the value of property PropertyName
obj.PropertyName = x;
x = obj.PropertyName;

% Call static method staticMethodName
packagename.ClassName.staticMethodName(...);

% Call package function functionName
packagename.functionName(...)

If a package directory contains a class definition file, then consider the
package name as part of the class name. Wherever you need to use the class
name, include the package name. For example, containers.Map is the full
class name of the Map class.

5-12

Creating Objects

See the object’s user documentation for the syntax you need to use to create
objects.

See “Organizing Classes in Directories” and “Scoping Classes with Packages”
for more information on the use of packages.

See “Importing Classes” for information on importing packages into functions.

5-13

5 Using Objects

Accessing Object Data

In this section...

“Listing Public Properties” on page 5-14
“Getting Property Values” on page 5-14
“Setting Property Values” on page 5-15

Listing Public Properties

Note You should always treat property names as being case sensitive.

You can see the names of all public object properties using the properties
function with the object’s class name or with an actual object. For example:

>> properties('MException')
Properties for class MException:

identifier
message
cause
stack

Getting Property Values
After creating an object, you can access the values of its properties:

try
a = rand(4);
a(17) = 7;

catch me % catch creates an MException object named me
disp(['Current error identifier: ' me.identifier])

end
Current error identifier: MATLAB:indexed_matrix_cannot_be_resized

Access the data in properties using dot notation:

object.PropertyName

5-14

Accessing Object Data

For example, you can access the message property of the MException object,
me, with this syntax:

>> me.message
ans =
In an assignment A(I) = B, a matrix A cannot be resized.

See “Capturing Information About the Error” on page 8-5 for more information
on using MException objects.

Setting Property Values
Objects often restrict what values you can assign to them. For example, the
following timeseries object has 10 data values, each corresponding to a
sample time:

tsobj = timeseries(rand(10,1),1:10,'Name','Random Sample');

Now suppose you attempt to set the Data property to a three-element vector:

>> tsobj.Data = [1 2 3];
??? Error using ==> timeseries.timeseries>timeseries.set.Data at 171
Size of the data array is incompatible with the time vector.

The timeseries class design ensures that the number of data samples
matches the number of time samples. This illustrates one of the advantages a
specialized object has over a general purpose-data structure like a MATLAB
struct.

5-15

5 Using Objects

Calling Object Methods

In this section...

“What Operations Can You Perform” on page 5-16
“Method Syntax” on page 5-16
“Class of Objects Returned by Methods” on page 5-18

What Operations Can You Perform
Methods define all aspects of an object’s behavior. Consequently, most classes
implement many methods that an object user is unlikely to call directly. The
user documentation for the object you are using describes the operations you
can perform on any particular object.

You can list the methods defined by a class with the methods or methodsview
functions:

methods('timeseries')

Methods for class timeseries:
addevent gettsbetweenevents set
addsample horzcat setabstime
createTstoolNode idealfilter setinterpmethod
ctranspose init setprop
...
gettsatevent pvset var
gettsbeforeatevent rdivide vertcat
gettsbeforeevent resample

Static methods:
tsChkTime tsgetrelativetime

Method Syntax
You call an object’s method using dot notation:

returnedValue = object.MethodName(args,...)

5-16

Calling Object Methods

You also can call a method using function syntax, passing the object as the
first (left-most) argument.

For example, MException objects have a getReport method that returns
information about the error.

try
surf

catch me
disp(me.getReport)

end

Error using ==> surf at 50
Not enough input arguments.

Dot and function notation are usually equivalent. That is, both of the
following statements return the MException report:

rpt = getReport(me); % Call getReport using function notation
rpt = me.getReport; % Call getReport using dot notation

Calling the Correct Method
It is possible for the function syntax to call an unexpected method if there is
more than one object in the argument list. Suppose there are two classes,
ClassA and ClassB, that define a method called addData. Suppose further
that ClassA is defined as being inferior to ClassB in precedence (something
that the class designer can do in the class definition). In this situation, given
objA is of ClassA and objB is of ClassB, the following two statement call
different methods:

addData(objA,objB) % Calls objB.addData
objA.addData(objB) % Calls objA.addData

If ClassA and ClassB had equal precedence, then the left-most argument
determines which method MATLAB calls (i.e., objA.addData in both
statements).

It is unlikely that you will encounter this particular scenario, however, if you
are calling a method that accepts more than one object as arguments, using

5-17

5 Using Objects

dot notation removes any ambiguity about which object’s method MATLAB
calls.

Class of Objects Returned by Methods
While methods sometimes return objects of the same class, this is not always
the case. For example, the MException object’s getReport returns a character
string:

try
surf

catch me
rpt = me.getReport;

end

whos
Name Size Bytes Class Attributes
me 1x1 780 MException
rpt 1x171 342 char

Methods can return any type of value and properties can contain any type of
value. However, class constructor methods always return an object or array of
objects of the same type as the class.

5-18

Desktop Tools Are Object Aware

Desktop Tools Are Object Aware

In this section...

“Tab Completion Works with Objects” on page 5-19
“Editing Objects with the Variable Editor” on page 5-19

Tab Completion Works with Objects
MATLAB tab completion works with objects. For example, if you enter an
object name followed by a dot:

tsobj.

and then press the tab key, MATLAB pops up a selection box with a list of
properties and methods:

The more letters you complete after the dot, the more specific is the list. See
“Completing Statements in the Command Window — Tab Completion” for
more information.

Editing Objects with the Variable Editor
You can use the MATLAB Variable Editor to edit object properties. To open
an object in the Variable Editor, you can double-click the object name in the
Workspace browser or use the openvar command:

5-19

5 Using Objects

tsobj = timeseries(rand(10,1),.01:.01:.1,'Name','Data1');
openvar tsobj

See “Viewing and Editing Workspace Variables with the Variable Editor”
for more information.

5-20

Getting Information About Objects

Getting Information About Objects

In this section...

“The Class of Workspace Variables” on page 5-21
“Information About Class Members” on page 5-23
“Logical Tests for Objects” on page 5-23
“Displaying Objects” on page 5-24
“Getting Help for MATLAB Objects” on page 5-25

The Class of Workspace Variables
Knowing the class of the variables you are working with enables you to use
them most effectively. For example, consider the following variable created in
your workspace:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24,'Name','Data1');
>> whos

Name Size Bytes Class
count 24x3 576 double
tsobj 24x1 261 timeseries

The whos command lists information about your workspace variables. Notice
that the variable loaded from the count.dat file (count) is an array of
doubles. You know, therefore, that you can perform indexing and arithmetic
operations on this array. For example:

newcount = sum(count,2);
newcount(8:15) = NaN;
bar(newcount)

Indexed assignment and the bar function work with inputs of class double.

5-21

5 Using Objects

0 5 10 15 20 25
0

100

200

300

400

500

600

However, the timeseries class does not define a bar method for timeseries
objects. The timeseries class defines a plotmethod for graphing because the
class design specified a line plot as the best way to represent time series data.

Extracting Data From Object Properties
Suppose you have a timeseries object and you want to work directly with the
numeric values of the timeseries data. You can extract data from the object
properties and assign these values to an array. For example

load count
tsobj = timeseries(sum(count,2),1:24,'Name','DataSum');
d = tsobj.Data;
t = tsobj.Time;
n = tsojb.Name;
d(8:15) = NaN;
bar(t,d); title(n)

Testing for the Class of an Object
Suppose you create an M-file that operates on more than one class of object.
If you have a timeseries object, you call the timeseries plot method, but

5-22

Getting Information About Objects

if the object is of class double, you can call the bar function (which isn’t
supported by timeseries objects). You could use isa as in the following code
to make this determination:

if isa(obj,'timeseries')
plot(obj)

elseif isa(obj,'double')
bar(obj)

end

Information About Class Members
These functions provide information about the object.

Function Purpose

class Return class of object
events List of event names defined by the class
methods List of methods implemented by the class
methodsview Information on class methods in separate window
properties List of class property names

Logical Tests for Objects
In M-files, you might need conditional statements to determine the status of
an object before performing certain actions. For example, you might perform
different actions based on the class of an object (see “Testing for the Class of an
Object” on page 5-22). The following functions provide logical tests for objects:

Function Purpose

isa Determine whether argument belongs to a particular
class. True for object’s class and all of object’s
superclasses.

isequal Determine if two objects are equal.
isobject Determine whether the input is a MATLAB object.

5-23

5 Using Objects

Testing for Object Equality
isequal finds two objects to be equal if all the following conditions are met:

• Both objects are of the same class

• Both objects are of the same size

• All corresponding property values are equal

isequal tests the value of every array element in every property and every
property of every object contained in the objects being tested. As contained
objects are tested for equality, MATLAB calls each object’s own version of
isequal (if such versions exist).

If objects contain large amounts of data stored in other objects, then testing
for equality can be a time-consuming process.

Identifying MATLAB Objects
The isobject function returns true only for MATLAB objects. For Sun Java
objects, use isjava. For Handle Graphics objects, use ishandle.

Note ishandle returns false for MATLAB handle objects. See “Testing for
Handle or Value Class” on page 5-30 for more information.

Displaying Objects
When you issue commands that return objects and do not terminate those
commands with a semicolon, or when you pass an object to the disp function,
MATLAB displays information about the object. For example:

hobj = containers.Map({'Red Sox','Yankees'},
{'Boston','New York'})
hobj =

containers.Map handle
Package: containers
Properties:

Count: 2
KeyType: 'char'

ValueType: 'char'

5-24

Getting Information About Objects

Methods, Events, Superclasses

This information includes links (shown in blue) to documentation on the
object’s class and superclasses, and lists of methods, events, and superclasses.
Properties and their current values are also listed.

Some classes (timeseries, for example) redefine how they display objects to
provide more useful information for this particular class.

Getting Help for MATLAB Objects
You can get documentation for MATLAB objects using the doc command
with the class name. To see the reference pages for the objects used in this
chapter, use the following commands:

doc timeseries
doc MException
doc containers.Map % Include the package name

5-25

5 Using Objects

Copying Objects

In this section...

“Two Copy Behaviors” on page 5-26
“Value Object Copy Behavior” on page 5-26
“Handle Object Copy Behavior” on page 5-27
“Testing for Handle or Value Class” on page 5-30

Two Copy Behaviors
There are two fundamental kinds of MATLAB classes—handles and values.

Value classes create objects that behave like ordinary MATLAB variables
with respect to copy operations. Copies are independent values. Operations
that you perform on one object do not affect copies of that object.

Handle classes create objects that are sometimes referred to as references.
This is because a handle, and all copies of this handle, refer to the same
underlying object. When you create a handle object, you can copy the handle,
but not the data referenced by the object’s properties. Any operations you
perform on a handle object affects all copies of that object. Handle Graphics
objects behave in this way.

More Information About Handle and Value Classes
For more detailed information about handle and value classes, see “Value
or Handle Class — Which to Use” in the Object-Oriented Programming
documentation.

Value Object Copy Behavior
MATLAB numeric variables exhibit the behavior of value objects. For
example, when you copy a to the variable b, both variables are independent of
each other. Changing the value of a does not change the value of b:

a = 8;
b = a;

5-26

Copying Objects

Now reassign a and b is unchanged:

a = 6;
b
b =

8

Clearing a does not affect b:

clear a
b
b =

8

Value Object Properties
The copy behavior of values stored as properties in value objects is the same.
For example, suppose vobj1 is a value object with property a:

vobj1.a = 8; % Property is set to a value

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, you
can see that the value of the copied object’s property vobj2.a is unaffected:

vobj2 =vobj1;
vobj1.a = 5;

vobj2.a
ans =

8

Handle Object Copy Behavior
Suppose you have a handle class called HdClass that defines a property called
Data, and that you create an object of this class with the following statement:

hobj1 = HdClass(8)

Because this statement is not terminated with a semicolon, MATLAB displays
information about the object:

hobj1 =

5-27

5 Using Objects

HdClass handle
Properties:

Data: 8

The variable hobj1 is a handle that references the object created. Copying
hobj1 to hobj2 results in another handle (the variable hobj2) referring to
the same object:

hobj2 = hobj1
hobj2 =

HdClass handle
Properties:

Data: 8

Because handle objects reference the data contained in their properties,
copying an object copies the handle to a new variable name, but the properties
still refer to the same data. For example, given that hobj1 is a handle object
with property Data:

hobj1.Data
ans =

8

When you change the value of hobj1’s Data property, the value of the copied
object’s Data property also changes:

hobj1.Data = 5;

hobj2.Data
ans =

5

Because hobj2 and hobj1 are handles to the same object, changing the copy,
hobj2, also changes the data you access through handle hobj1:

hobj2.Data = 17;
hobj1.Data
ans =

17

5-28

Copying Objects

Reassigning Handle Variables
Reassigning a handle variable produces the same result as reassigning any
MATLAB variable. When you create a new object and assign it to hobj1:

hobj1 = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously
(and still referenced by hobj2).

Clearing Handle Variables
When you clear a handle from the workspace, MATLAB removes the
variable, but does not removed the object referenced by the handle. Therefore,
given hobj1 and hobj2, which both reference the same object, you can clear
either handle without affecting the object:

hobj1.Data = 2^8;
clear hobj1
hobj2
hobj2 =

HdClass handle
Properties:

Data: 256

If you clear both hobj1 and hobj2, then there are no references to the object
and MATLAB deletes the object and frees the memory used by that object.

Deleting Handle Objects
To remove an object referenced by any number of handles, you delete the
object. Given hobj1 and hobj2, which both reference the same object, if you
delete either handle, MATLAB deletes the object:

hobj1 = HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2
hobj2 =

deleted HdClass handle

5-29

5 Using Objects

See “Destroying Objects” on page 5-31 for more information about object
lifecycle.

Testing for Handle or Value Class
If you are writing MATLAB programs that copy objects, you might need to
determine if any given object is a handle or value. To determine if an object is
a handle object, use the isa function:

isa(obj,'handle')

For example, the containers.Map class creates a handle object:

hobj = containers.Map({'Red Sox','Yankees'}, {'Boston','New York'});

isa(hobj,'handle')

ans =

1

hobj is also a containers.Map object:

isa(hobj,'containers.Map')
ans =

1

If you query the class of hobj, you see that it is a containers.Map object:

class(hobj)
ans =
containers.Map

The class function returns the specific class of an object, whereas isa
returns true for any of the object’s superclasses as well. This behavior is
consistent with the object-oriented concept that an object is a member of all its
superclasses. Therefore, it is true that a containers.Map object is a handle
object and a containers.Map object.

There is no equivalent test for value classes because there is no value base
class. If an object is a value object, isa(object,'handle') returns false
(i.e., logical 0).

See “Map Containers” on page 1-144 for more information on the
containers.Map class.

5-30

Destroying Objects

Destroying Objects

In this section...

“Object Lifecycle” on page 5-31
“Difference Between clear and delete” on page 5-31

Object Lifecycle
An object’s lifecycle ends when you reassign a new value to that variable,
when it is no longer used in a function, or when function execution ends.
MATLAB handle classes have a special method called delete that MATLAB
calls when a handle object lifecycle ends.

Calling delete on an object explicitly makes all copies of a handle object
invalid because it destroys the data associated with the object and frees
memory used by deleted objects. MATLAB calls delete automatically so it is
not necessary for you to do so. Classes can redefine the handle class delete
method to perform other cleanup operations, like closing files or saving data.

Deleting a handle object renders all copies invalid:

delete(hobj1)
hobj2.a
??? Invalid or deleted object.

Difference Between clear and delete
The handle class delete method removes the handle object, but does not
clear the variable name. The clear function removes a variable name, but
does not remove the values to which the variable refers. For example, if you
have two variables that refer to the same handle object, you can clear either
one without affecting the actual object:

hobj = containers.Map({'Red Sox','Yankees'}, {'Boston','New York'});

hobj_copy = hobj;

clear hobj

city = hobj_copy('Red Sox')

city =

Boston

5-31

5 Using Objects

If you call delete on all handle variables that refer to the same handle object,
then you have lost access to the object and MATLAB destroys the object. That
is, when there are no references to an object, the object ceases to exist.

If you call delete on a value object, MATLAB returns an error. You can only
call clear on value objects.

5-32

6

Data Import and Export

• “Overview” on page 6-2

• “Supported File Formats” on page 6-7

• “Using the Import Wizard” on page 6-11

• “Exporting Data to MAT-Files” on page 6-24

• “Importing Data From MAT-Files” on page 6-32

• “Importing Text Data” on page 6-35

• “Exporting Text Data” on page 6-44

• “Working with Spreadsheets” on page 6-49

• “Working with Graphics Files” on page 6-59

• “Working with Audio and Video Data” on page 6-62

• “Using Low-Level File I/O Functions” on page 6-67

• “Accessing Files with Memory-Mapping” on page 6-80

• “Exchanging Files over the Internet” on page 6-121

6 Data Import and Export

Overview

In this section...

“Supported File Types” on page 6-2
“Other MATLAB I/O Capabilities” on page 6-4
“Functions Used in File Management” on page 6-5

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

Supported File Types
The MATLAB software provides many ways to load data from disk files or
the clipboard into the workspace, a process called importing data. Also there
are many ways to save workspace variables to a disk file, a process called
exporting data. Your choice of which import or export mechanism to use
depends mainly on the format of the data being transferred: text, binary,
or a standard format such as JPEG.

Note For unsupported high-level function data formats, you can use the
MATLAB low-level file I/O functions if you know how the binary data is
formatted in the file. For more information, see “Using Low-Level File I/O
Functions” on page 6-67.

MATLAB has built-in capabilities to import and export the following types
of data files:

• “Binary Data from a MATLAB Session” on page 6-3

• “Text Data” on page 6-3

• “Graphics Files” on page 6-3

• “Audio and Audio/Video Data” on page 6-3

• “Spreadsheets” on page 6-4

6-2

http://www.mathworks.com/support/tech-notes/1600/1602.html

Overview

• “Data from the System Clipboard” on page 6-4

• “Information from the Internet” on page 6-4

Binary Data from a MATLAB Session
Using the MATLAB save and load functions, you can store all or part of the
data in your MATLAB workspaces to disk, and then read that data back
into MATLAB at a later time.

Text Data
In text format, the data values are American Standard Code for Information
Interchange (ASCII) codes that represent alphabetic and numeric characters.
You can view ASCII text data in a text editor. For more information about
working with text data in MATLAB, see these sections:

• “Importing Text Data” on page 6-35

• “Exporting Text Data” on page 6-44

They also describe how to import and export to XML documents.

Graphics Files
MATLAB imports and exports images from many standard graphics
file formats, including the Tagged Image File Format (TIFF), Graphics
Interchange Format (GIF), Joint Photographic Experts Group (JPEG), and
Portable Network Graphics (PNG) formats.

Audio and Audio/Video Data
MATLAB provides functions to enable you to interact with the following types
of audio and audio/video files:

• NeXT/Sun SPARC®station sound

• Microsoft WAVE sound

• Audio/Video Interleaved (AVI)

• Sound devices compatible with Microsoft Windows

• Audio player and recorder objects

6-3

6 Data Import and Export

• Linear audio signals

Spreadsheets
You can use MATLAB to import and export data to the following types of
spreadsheets:

• Microsoft® Excel® spreadsheets

• Lotus 123 spreadsheets

Data from the System Clipboard
Using the Import Wizard or the clipboard function, you can temporarily hold
string data on your system’s clipboard, and then paste it back into MATLAB.

Information from the Internet
From your MATLAB session, you can

• Send e-mail

• Download from the Internet

• Compress (zip) and decompress (unzip) files

• Connect to an FTP server to perform remote file operations

Other MATLAB I/O Capabilities

• “Using the Import Wizard” on page 6-4

• “Mapping Files to Memory” on page 6-5

• “Low-Level File I/O” on page 6-5

• “Importing Data with Toolboxes” on page 6-5

Using the Import Wizard
The Import Wizard is a graphical user interface that simplifies the process
of locating and loading various types of data files into MATLAB. You do not
need to know the format of the data to use this tool. You simply specify the

6-4

Overview

file that contains the data and the Import Wizard processes the file contents
automatically. See the section on “Using the Import Wizard” on page 6-11.

Mapping Files to Memory
Memory-mapping enables you to read and write data in a file as if were stored
in the computer’s dynamic memory. The contents of the mapped file appear as
if they were an array in the currently active workspace. You simply index into
this array to read or write the desired data from the file. See the section on
“Accessing Files with Memory-Mapping” on page 6-80.

Low-Level File I/O
MATLAB also supports C-style, low-level I/O functions that you can use
with any data format. For more information, see “Using Low-Level File I/O
Functions” on page 6-67.

Importing Data with Toolboxes
In addition to MATLAB import functions, you can perform specialized import
features using toolboxes. For example, use Database Toolbox™ software for
importing data from relational databases. Refer to the documentation on the
specific toolbox to see what import features are offered.

Functions Used in File Management
The following functions are available in MATLAB to help you to create,
manage, and locate the files and directories you work with. For more
information on these and other file management functions, see “Managing
Files and Working with the Current Directory” in the MATLAB Desktop
Tools and Development Environment documentation:

Function Description

cd Switch your current working directory to another directory
clipboard Copy and paste strings to and from the system clipboard
copyfile Copy a file or directory to another location
delete Delete the specified files
dir List the files that reside in the specified directory

6-5

6 Data Import and Export

Function Description

edit Create a new M-file or edit an existing one
exist Check the existence of a file or directory
fileattrib Set or get attributes of a file or directory
filebrowser Start the Current Directory Browser
fileparts Show the components of a file name and its place on the

path
fullfile Build a full file name from its components
ls List the contents of a specific directory
mkdir Create a new directory
movefile Move a file or directory to a new location
open Open files based on extension
pwd Identify the directory you are currently working in
recycle Set an option to move deleted files to recycle folder
rmdir Delete a specific directory
what List the MATLAB files in a specific directory
which Locate functions and files

6-6

Supported File Formats

Supported File Formats
The table below shows the file formats that you can read or write from your
MATLAB application, along with the functions that support each format.

File Content Extension Description
Import
Function

Export
Function

MATLAB
formatted data

MAT Saved MATLAB
workspace

load save

White-space delimited
numbers

load save -ascii

Delimited numbers dlmread dlmwrite

Comma delimited
numbers

csvread csvwrite

Text any

Any of the above text
formats, or a mix of
strings and numbers

textscan

XLS Microsoft Excel
worksheet

Spreadsheet

XLSX
XLSB
XLSM

Formats supported with
Excel® 2007 for Windows
installed

xlsread xlswrite

Extended Markup
Language

XML XML-formatted text xmlread xmlwrite

Data Acquisition
Toolbox™ file

DAQ Data Acquisition Toolbox daqread none

6-7

6 Data Import and Export

File Content Extension Description
Import
Function

Export
Function

CDF Common Data Format cdfread cdfwrite

FITS Flexible Image
Transport System

fitsread

HDF Hierarchical Data
Format, version 4, or
HDF-EOS v. 2

hdfread

none

H5 HDF or HDF-EOS,
version 5

hdf5read hdf5write

Scientific data

NC Network Common Data
Form (netCDF)

See netcdf See netcdf

BMP Windows Bitmap
GIF Graphics Interchange

Format
HDF Hierarchical Data

Format
JPEG
JPG

Joint Photographic
Experts Group

PBM Portable Bitmap
PCX Paintbrush
PGM Portable Graymap
PNG Portable Network

Graphics
PNM Portable Any Map
PPM Portable Pixmap
RAS Sun Raster
TIFF
TIF

Tagged Image File
Format

XWD X Window Dump

imread imwriteImage

6-8

Supported File Formats

File Content Extension Description
Import
Function

Export
Function

CUR Windows Cursor
resources

FITS
FTS

Flexible Image
Transport System

ICO Windows Icon resources
JP2
JPF
JPX
J2C
J2K

JPEG 2000

imread none

AU
SND

NeXT/Sun sound auread auwriteAudio file

WAV Microsoft WAVE sound wavread wavwrite

Video (all
platforms)

AVI Audio Video Interleave aviread,
mmreader

avifile

MPG Motion Picture Experts
Group, phases 1 and 2

ASF
ASX
WMV

Windows Media®

Video (Windows)

any Formats supported by
Microsoft DirectShow®

mmreader none

6-9

6 Data Import and Export

File Content Extension Description
Import
Function

Export
Function

MPG
MP4
M4V

MPEG-1 and MPEG-4Video (Mac®)

any Formats supported by
QuickTime®, including
.mov, .3gp, .3g2, and
.dv

mmreader none

Video (Linux®) any Formats supported
by your installed
GStreamer plug-ins,
including .ogg

mmreader none

6-10

Using the Import Wizard

Using the Import Wizard

In this section...

“Overview” on page 6-11
“Starting the Import Wizard” on page 6-11
“Previewing Contents of the File or Clipboard [Text only]” on page 6-13
“Specifying Delimiters and Header Format [Text only]” on page 6-15
“Determining Assignment to Variables” on page 6-16
“Automated M-Code Generation” on page 6-19
“Writing Data to the Workspace” on page 6-22

Overview
The easiest way to import data into your MATLAB application is to use the
Import Wizard. You do not need to know the format of the data to use this
tool. You simply specify the file that contains the data and the Import Wizard
processes the file contents automatically. You can also use the Import Wizard
to import HDF data. For more information, see “Using the HDF Import Tool”
on page 7-45.

The sections on Previewing Contents of the File or Clipboard and Specifying
Delimiters and Header Format apply only to text files and the clipboard.

Starting the Import Wizard
To start the Import Wizard and select the source to import, see these sections:

• “Importing from a File” on page 6-12

• “Importing from the Clipboard” on page 6-12

If you use the uiimport function to start the Wizard, you can choose to have
the imported data written to a MATLAB structure. See “Importing to a
Structure” on page 6-13.

6-11

6 Data Import and Export

Importing from a File
To start the Wizard and use a file browser to locate the file to import, use one
of the menu options or MATLAB commands shown here:

• Select Import Data from the File menu

• Type uiimport -file, and press Enter

• Type uiimport, press Enter, and click File in the Import Data dialog box

If you already know the name of the file to import, use one of the following
means to initiate the operation:

• In the Current Directory browser, right-click the filename and select
Import Data

• Type uiimport filename, where filename is an unquoted string
containing the name of the file to import.

Importing from the Clipboard
To import from the system clipboard, use one of the menu options or MATLAB
commands shown here:

• Select Paste to Workspace from the Edit menu

• Type uiimport -pastespecial, and press Enter

• Type uiimport, press Enter, and click Clipboard in the Import Data
dialog box

6-12

Using the Import Wizard

Importing to a Structure
Specifying an output argument with the uiimport command tells MATLAB
to return the imported data in the fields of a single structure rather than
as separate variables.

The command

S = uiimport('filename')

imports the file filename to the fields of structure S. The filename argument
is a single-quoted string containing the name of the file to import.

If you are importing from a binary file, skip ahead Determine Assignment
to Variables.

Previewing Contents of the File or Clipboard [Text
only]
When the Import Wizard imports text data from a file or the clipboard, it
opens the dialog box shown here and displays a portion of the raw data in
the preview pane on the left. You can use this display to verify that the file
contains the data you expect.

6-13

6 Data Import and Export

 �����!������������
�����������

2���-�������
��
�������

3
-���������������
���������0���������

����4��������0����������������56������
������
���$�����-��
�
����-$��������������#$�

The pane on the right side of the dialog box shows how MATLAB has assigned
the imported data to a default set of variables. The variable names appear
in the tabs above the display pane. Click any of these tabs to see the values
assigned to that variable. The variable names are derived from categories into
which the Import Wizard has sorted the data. These are as follows:

• rowheaders— Column vector containing the names of all row headers.

• colheaders— Row vector containing the names of all column headers.

• textdata — Matrix containing all imported text data. Empty elements
are set to ''.

• data — Matrix containing all imported numeric data. Empty elements
are set to NaN.

If the imported file or clipboard contains only numeric or only text data, then
the Import Wizard does not use the variable names shown above. Instead, it
assigns all of the data to just one variable:

6-14

Using the Import Wizard

• For data imported from a text file, the name of the variable is the same as
the filename, minus the file extension.

• For data imported from the clipboard, the name of the variable is
A_pastespecial.

Specifying Delimiters and Header Format [Text only]
Using the options shown at the top of the Import Wizard dialog box, you can
specify a delimiter character for separating data items, and also the number
of lines you want to use for column headers.

Delimiters
Most text files use a unique character called a delimiter or column separator
to mark the separation between items of data. For example, data in a
comma-separated value (CSV) file is, of course, separated by commas. Data in
some other file might be separated by tab or space characters.

When the Import Wizard imports from a text file or the clipboard, it makes its
best guess as to which character was intended as the delimiter and displays
the data accordingly. If this is not correct, you will need to set the correct
delimiter from the choices shown under Select Column Separator(s)
in the upper left of the dialog box. When you do this, the Import Wizard
immediately reformats the data, displaying new values for the data shown
in the preview pane.

Header Format
When reading in data from a text file or the clipboard, the Wizard looks for
any lines at the top that have no numeric characters, and assigns these lines
to the variable textdata. MATLAB counts these lines and displays the count
in the Number of text header lines value field in the upper right of the
Import Wizard window. You can adjust this count if it does not accurately
represent the header format within the file.

Note The Number of text header lines selector applies only to column
headers. It has no effect on row headers.

6-15

6 Data Import and Export

MATLAB creates a row vector from the bottommost of these lines and assigns
it to the variable colheaders.

Generate M-Code Checkbox
The Generate M-code checkbox at the bottom of the Import Wizard dialog
box applies to both text and binary data, and thus is described in “Automated
M-Code Generation” on page 6-19.

To continue, click Next at the bottom of the dialog box.

Determining Assignment to Variables
At this point, the Import Wizard displays the dialog box shown below. This
dialog displays data for both text and binary files.

7������������������������-$�����

���������������������������������������
���������-$�����������������-

The left pane of the dialog box displays a list of the variables MATLAB
created for your data. For text files, MATLAB derives the variable names
as described in Preview Contents of the File. For binary files, the variable
names are taken directly from the file.

6-16

Using the Import Wizard

Click any variable name and MATLAB displays the contents of that variable
in the pane to the right. MATLAB highlights the name of the variable that is
currently displayed in the right pane.

Structuring the Output Data
The top portion of this dialog box offers three options for organizing the file’s
data:

• Create variables matching preview

• Create vectors from each column using column names

• Create vectors from each row using row names

Note For data imported from a binary file, only the top option is active.
Variable names and assignment are taken directly from the imported file. For
text data, you can use any of the three options; however, the bottom two are
active only if the file or clipboard contains row or column headers.

While importing from the example text file grades.txt, select the third
option to create vectors from row names. Observe that the display replaces
the default variable assignments with new variables derived from the row
headers. Click any of these variable names, and the Wizard displays the
contents of the corresponding row vector.

6-17

6 Data Import and Export

"������������$����
�����������������
���-���!�������

7������������
�����������#
��!�������

Selecting Which Variables to Write to the Workspace
The checkboxes to the left of each variable name enable you to include or
exclude individual variables from those that will be written to the workspace.
By default, all variables are selected. Select the checkbox of any variable you
do not want written to the workspace. The check mark is removed from any
variables that you deselect.

Example of Selecting Variables to Load. Use the Import Wizard to
import this sample binary MAT-file, my_data.mat,

C =
1 2 3 4 5
6 7 8 9 10

D =
a test string

The Import Wizard displays two variables, as listed in the preview pane. To
select a variable to import, select the check box next to its name. All variables
are preselected by default.

6-18

Using the Import Wizard

 �����!�����������������
�����������

 �����!������������
����������������

Automated M-Code Generation
To perform additional imports from this or a similar type of file, you can
automate this process by creating a MATLAB function that performs all of the
steps you just went through. To have the Import Wizard write this function
for you, select the Generate M-code checkbox in the lower right corner of
the Wizard dialog.

Once you click Finish to complete the import, MATLAB opens an Editor
window displaying the generated M-file function. The function is called
importfile.m. If this name is already taken, then MATLAB names the file
importfileN.m, where N is a number that is one greater than the highest
existing importfile.m file.

The generated function has the following input and output arguments:

• Input: fileToRead1 — Name of the file to import from. This argument
exists only when importing from a file.

6-19

6 Data Import and Export

• Output: newData1 — Structure to assign all imported data to. This
argument exists only if you have specified an output argument with the call
to uiimport when starting the Import Wizard. Otherwise, variables retain
the same naming as assigned within the Wizard.

The newData1 output is a structure that has one field for each output of the
import operation.

The workspace variables created by this generated M-code are the same as
those created by running the Import Wizard. For example, if you elect to
format the output in column vectors when running the Import Wizard, the
generated M-file does the same. However, unlike the Import Wizard, you
cannot mark any variables to be excluded from the output.

Make any necessary modifications to the generated M-file function in the
Editor window. To save the M-file, select Save from the File menu at the top.

Caution You must save the file yourself; MATLAB does not automatically
save it for you.

Example of M-Code Generation
The M-file shown below was generated by MATLAB during an import of the
file grades.txt, shown earlier in this section. During the import that created
this file, the option to Create vectors from each row using row names
was selected, thus generating four row vectors for output: Ann, John, Martin,
and Rob. Also, the row vector for John was deselected by clearing the checkbox
next to that name in the Wizard.

6-20

Using the Import Wizard

If you run the function, you find that the workspace now holds the four row
vectors Ann, John, Martin, and Rob, instead of the default variables created by
the Import Wizard (data, textdata, and rowheaders). Also, note that the
vector for John is written to the workspace along with the others, even though
this one variable had been deselected from the Import Wizard interface.

importfile grades.txt

whos
Name Size Bytes Class Attributes

Ann 1x3 24 double
John 1x3 24 double
Martin 1x3 24 double
Rob 1x3 24 double

6-21

6 Data Import and Export

Writing Data to the Workspace
To complete the import operation, click Finish to bring the data into the
MATLAB workspace. This button also dismisses the Import Wizard.

Variables written to the workspace are in one of the following formats. The
first three apply only to data read from text files or the clipboard, the fourth
applies only to binary files, and the last applies to both:

Variable Name Output

data, textdata, rowheaders,
colheaders

Separate matrices for numeric, text, and
header data.

Variables named after row or
column headers

One vector for each row or column.

Single variable named after the
file name, or A_pastespecial

One matrix for all data named after the
file name

Variable names taken from
binary file

Data assigned to each variable stored in
a binary file.

Output variable assigned during
call to uiimport

A single structure having fields that
match one of the formats described
above.

Examples
Here are a few examples of how to use the Import Wizard.

Example 1—Text Data. Start by creating the text file grades.txt using the
MATLAB editor. The file contains the following:

John 85 90 95
Ann 90 92 98
Martin 100 95 97
Rob 77 86 93

Import from text file grades.txt, using default variables to store the data:

uiimport grades.txt

6-22

Using the Import Wizard

whos
Name Size Bytes Class Attributes

data 4x3 96 double
rowheaders 4x1 272 cell
textdata 4x1 272 cell

Example 2— Partial Text File with Row Vectors. Import from the same
file as in the above example, but this time select Create vectors from each
row using row names. Also, clear the checkbox next to variable John so
that this one vector does not get written to the workspace:

whos
Name Size Bytes Class Attributes

Ann 1x3 24 double
Martin 1x3 24 double
Rob 1x3 24 double

Example 3 — Binary Data Assigned to a Structure. Save numeric and
text data in binary format in file importtest.mat and use the Import Wizard
to import the binary file into the workspace.

C = [1 2 3 4 5;6 7 8 9 10];
D = 'a test string';
save importtest C D

clear
s = uiimport('importtest.mat')
s =

C: [2x5 double]
D: 'a test string'

6-23

6 Data Import and Export

Exporting Data to MAT-Files

In this section...

“MAT-Files” on page 6-24
“Using the save Function” on page 6-24
“Saving Structures” on page 6-25
“Appending to an Existing File” on page 6-26
“Data Compression” on page 6-26
“Unicode Character Encoding” on page 6-28
“Optional Output Formats” on page 6-29
“Storage Requirements” on page 6-30
“Saving from External Programs” on page 6-31

MAT-Files
MAT-files are double-precision, binary, MATLAB format files. They can be
created on one machine and later read by MATLAB on another machine with
a different floating-point format, retaining as much accuracy and range as
the different formats allow. They can also be manipulated by other programs
external to MATLAB.

This section explains how to save the variables in your MATLAB session to
a binary file called a MAT-file. The next section explains how to load the
variables back into your MATLAB workspace.

Using the save Function
To export workspace variables to a binary or ASCII file, use the save function.
You can save all variables from the workspace in a single operation (if you
omit the filename, MATLAB uses the name matlab.mat):

save filename

or save just those variables that you specify:

6-24

Exporting Data to MAT-Files

save filename var1 var2 ... varN

Use the wildcard character (*) in the variable name to save those variables
that match a specific pattern. For example, the following command saves all
variables that start with str:

save strinfo str*

Use whos -file to examine what has been written to the MAT-file:

whos -file strinfo
Name Size Bytes Class

str2 1x15 30 char array
strarray 2x5 678 cell array
strlen 1x1 8 double array

Saving Structures
When saving a MATLAB structure, you have the option of saving the entire
structure, saving each structure field as an individual variable in the
MAT-file, or saving specific fields as individual variables.

For structure S:

S.a = 12.7; S.b = {'abc', [4 5; 6 7]}; S.c = 'Hello!';

Save the entire structure to newstruct.mat with the usual syntax:

save newstruct.mat S;

whos -file newstruct
Name Size Bytes Class

S 1x1 550 struct array

Save the fields individually with the -struct option:

save newstruct.mat -struct S;

whos -file newstruct

6-25

6 Data Import and Export

Name Size Bytes Class

a 1x1 8 double array
b 1x2 158 cell array
c 1x6 12 char array

Or save only selected fields using -struct and specifying each field name:

save newstruct.mat -struct S a c;

whos -file newstruct
Name Size Bytes Class

a 1x1 8 double array
c 1x6 12 char array

Appending to an Existing File
You can add new variables to those already stored in an existing MAT-file by
using save -append. When you append to a MAT-file, MATLAB first looks
in the designated file for each variable name specified in the argument list,
or for all variables if no specific variable names are specified. Based on that
information, MATLAB does both of the following:

• For each variable that already exists in the MAT-file, MATLAB overwrites
its saved value with the new value taken from the workspace.

• For each variable not found in the MAT-file, MATLAB adds that variable to
the file and stores its value from the workspace.

Note Saving with the -append option does not append additional elements to
any arrays that are already saved in the MAT-file.

Data Compression
MATLAB compresses the data that you save to a MAT-file. Data compression
can save you a significant amount of storage space when you are working with
large files or working over a network.

6-26

Exporting Data to MAT-Files

Data compression is optional, however, and you can disable it either for an
individual save operation, or for all of your MATLAB sessions. Use the -v6
option with the save function to turn off compression on a per-command basis:

save filename -v6

To disable data compression for all of your MATLAB sessions, open the
Preferences dialog, select General, and then select MAT-Files. Next
click the option that is equivalent to the command save -v6. See General
Preferences for MATLAB in the Desktop Tools and Development Environment
documentation for more information.

Note You cannot read a compressed MAT-file with MATLAB software
versions earlier than Version 7. To write a MAT-file that you will be able
to read with one of these versions, save to the file with data compression
disabled.

Information returned by the command whos -file is independent of whether
the variables in that file are compressed or not. The byte counts returned by
this command represent the number of bytes data occupies in the MATLAB
workspace, and not in the file the data was saved to.

Evaluating When to Compress
You should consider both data set size and the type of data being saved
when deciding whether or not to compress the data you save to a file. The
benefits of data compression are greater when saving large data sets (over 3
megabytes), and are usually negligible with smaller data sets. Data that has
repeating patterns or more consistent values compresses better than random
data. Compressing data that has a random pattern is not recommended as it
slows down the performance of save and load significantly, and offers little
benefit in return.

In general, data compression and decompression slows down all save and
some load operations to some extent. In most cases, however, the resulting
reduction in file size is worth the additional time spent compressing or
decompressing. Because loading is typically done more frequently than
saving, load is considered to be the most critical of the two operations. Up to a
certain threshold (relative to the size of the uncompressed MAT-file), loading

6-27

6 Data Import and Export

a compressed MAT-File is slightly slower than loading an uncompressed
file containing the same data. Beyond that threshold, however, loading the
compressed file is faster.

For example, say that you have a block of data that takes up 100 megabytes
in memory, and this data has been saved to both a 10 megabytes compressed
file and a 100 megabytes uncompressed file. When you load each of these
files back into the MATLAB workspace, the first 10 megabytes of data takes
the same amount of time to load for each file. Loading the remaining 90
megabytes from the uncompressed file will take nine times as long as the first
10 megabytes, while all that remains to be done with the compressed file is to
decompress the data, and this takes a relatively short amount of time.

The loading size threshold is lower for network files, and also varies depending
on the type of computer being used. Network users loading compressed
MAT-files generally see faster load times than when loading uncompressed
files, and at smaller data sizes than users loading the same files locally.

Note Compression and decompression during save and load is done
transparently without the use of temporary files on disk. This is of significance
to large dataset users in particular.

Unicode Character Encoding
MATLAB saves character data to a MAT-file using the Unicode, Inc. Unicode
character encoding. As with data compression, Unicode character encoding
is optional. If you disable it, MATLAB writes the MAT-file using the default
encoding for your system. To disable Unicode character encoding on a
per-command basis, use the -v6 option with the save function:

save filename -v6

To disable Unicode character encoding for all of your MATLAB sessions, open
the Preferences dialog box, select General, and then select MAT-Files.
Next click the option that is equivalent to the command save -v6. See
General Preferences for MATLAB in the Desktop Tools and Development
Environment documentation for more information.

6-28

Exporting Data to MAT-Files

When writing character data to a non-HDF5-based MAT-file using Unicode
encoding (the default), MATLAB checks if the data is 7-bit ASCII. If it is,
MATLAB writes the 7-bit ASCII character data to the MAT-file using 8 bits
per character (UTF-8 format), thus minimizing the size of the resulting file.
Any character data that is not 7-bit ASCII is written in 16-bit Unicode form
(UTF-16). This algorithm operates on a per-string basis.

Note You cannot read a Unicode encoded MAT-file with MATLAB versions
earlier than Version 7. To write a MAT-file that you will be able to read
with one of these versions, save to the file with Unicode character encoding
disabled.

For more information on how MATLAB saves specific ASCII data formats,
and on preventing loss or corruption of character data, see “Writing Character
Data” in the MATLAB External Interfaces documentation.

Optional Output Formats
You can choose from any of the following formats for your output file. If you
do not specify a format, MATLAB uses the binary MAT-file format.

Output File Format Command

Binary MAT-file (default) save filename

8-digit ASCII save filename -ascii

8-digit ASCII, tab delimited save filename -ascii -tabs

16-digit ASCII save filename -ascii -double

16-digit ASCII, tab delimited save filename -ascii -double -tabs

MATLAB Version 4 compatible save filename -v4

Saving in ASCII Format
When saving in any of the ASCII formats, consider the following:

• Each variable to be saved must be either a two-dimensional double array
or a two-dimensional character array. Saving a complex double array

6-29

6 Data Import and Export

causes the imaginary part of the data to be lost, as MATLAB cannot load
nonnumeric data ('i').

• To read the file with the MATLAB load function, make sure all the
variables have the same number of columns. If you are using a program
other than MATLAB to read the saved data, this restriction can be relaxed.

• Each MATLAB character in a character array is converted to a
floating-point number equal to its internal ASCII code and written out as a
floating-point number string. There is no information in the saved file that
indicates whether the value was originally a number or a character.

• The values of all variables saved merge into a single variable that takes
the name of the ASCII file (minus any extension). Therefore, it is advisable
to save only one variable at a time.

Saving in Version 4 Format
With the -v4 option, you can save only those data constructs that are
compatible with MATLAB Version 4. Therefore, you cannot save structures,
cell arrays, multidimensional arrays, or objects. Variable names cannot
exceed 19 characters in length. In addition, you must use filenames that
are supported by MATLAB Version 4.

Storage Requirements
The binary formats used by save depend on the size and type of each array.
Arrays with any noninteger entries and arrays with 10,000 or fewer elements
are saved in floating-point formats requiring 8 bytes per real element. Arrays
with all integer entries and more than 10,000 elements are saved in the
formats shown, requiring fewer bytes per element.

Element Range Bytes per Element

0 to 255 1
0 to 65535 2
-32767 to 32767 2
-231 to 231-1 4
Other 8

6-30

Exporting Data to MAT-Files

Saving from External Programs
The MATLAB External Interfaces documentation provides details on reading
and writing MAT-files from external C or Fortran programs. It is important to
use recommended access methods, rather than rely upon the specific MAT-file
format, which is likely to change in the future.

6-31

6 Data Import and Export

Importing Data From MAT-Files

In this section...

“Using the load Function” on page 6-32
“Previewing MAT-File Contents” on page 6-32
“Loading Into a Structure” on page 6-33
“Loading Binary Data” on page 6-33
“Loading ASCII Data” on page 6-34

Using the load Function
To import variables from a binary or ASCII file on your disk to your
workspace, use the load function. You can load all variables from the
workspace in a single operation (if you omit the filename, the MATLAB
software loads from file matlab.mat):

load filename

or load just those variables that you specify:

load filename var1 var2 ... varN

Use the wildcard character (*) in the variable name to load those variables
that match a specific pattern. (This works for MAT-files only.) For example,
the following command loads all variables that start with str from file
strinfo.mat:

load strinfo str*

Caution When you import data into the MATLAB workspace, it overwrites
any existing variable in the workspace with the same name.

Previewing MAT-File Contents
To see what variables are stored in a MAT-file before actually loading the file
into your workspace, use whos -file filename. This command returns the
name, dimensions, size, and class of all variables in the specified MAT-file.

6-32

Importing Data From MAT-Files

You can use whos -file on binary MAT-files only:

whos -file mydata.mat
Name Size Bytes Class

javArray 10x1 java.lang.Double[][]
spArray 5x5 84 double array (sparse)
strArray 2x5 678 cell array
x 3x2x2 96 double array
y 4x5 1230 cell array

Loading Into a Structure
To load MAT-file data into a MATLAB structure, specify an output variable
in your load command. This example reads the data in mydata.mat into the
fields of structure S:

S = load('mydata.mat')
S =

x: [3x2x2 double]
y: {4x5 cell}

spArray: [5x5 double]
strArray: {2x5 cell}
javArray: [10x1 java.lang.Double[][]]

whos S
Name Size Bytes Class

S 1x1 2840 struct array

Loading Binary Data
MAT-files are double-precision binary MATLAB format files created by the
save function and readable by the load function. You can create MAT-files
on one machine and later MATLAB can read them on another machine with
a different floating-point format, retaining as much accuracy and range as
the different formats allow. Other programs, external to MATLAB, can also
manipulate MAT-files.

MAT-files can contain data in an uncompressed or a compressed form, or both.
MATLAB knows which variables in the file have been compressed by looking
at a tag that it attaches to each variable during the save operation. When

6-33

6 Data Import and Export

loading data from a MAT-file into the workspace, MATLAB automatically
handles the decompression of the appropriate data.

The External Interface libraries contain C- and Fortran-callable routines to
read and write MAT-files from external programs.

Loading ASCII Data
To use the load function, ASCII files must be organized as a rectangular
table of numbers, with each number in a row separated by a blank, comma,
semicolon, or tab character, and with an equal number of elements in each
row. MATLAB generates an error if the number of values differs between
any two rows. ASCII files can contain MATLAB comments (lines that begin
with %).

MATLAB returns all the data in the file as a single two-dimensional array
of type double. The number of rows in the array is equal to the number of
lines in the file, and the number of columns is equal to the number of values
on a line.

In the workspace, MATLAB assigns the array to a variable named after the
file being loaded (minus any file extension). For example, the command

load mydata.dat

reads all of the data from mydata.dat into the MATLAB workspace as a single
array, and assigns it to a variable called mydata. In naming the variable,
load precedes any leading underscores or digits in filename with an X and
replaces any other nonalphabetic characters with underscores.

For example, the command

load 10-May-data.dat

assigns the data in file 10-May-data.dat to a new workspace variable called
X10_May_data.

6-34

Importing Text Data

Importing Text Data

In this section...

“The MATLAB Import Wizard” on page 6-35
“Using Import Functions with Text Data” on page 6-35
“Importing Numeric Text Data” on page 6-37
“Importing Delimited ASCII Data Files” on page 6-38
“Importing Mixed Alphabetic and Numeric Data” on page 6-39
“Importing from XML Documents” on page 6-42

Caution When you import data into the MATLAB workspace, you overwrite
any existing variable in the workspace with the same name.

The MATLAB Import Wizard
The easiest way to import data into your MATLAB application is to use the
Import Wizard, a graphical user interface. The Import Wizard automatically
reads numeric data in any text file you specify. The Import Wizard also
recognizes text strings as row and column headers in your data.

For more information, see “Using the Import Wizard” on page 6-11.

Using Import Functions with Text Data
To import text data from the command line or in an M-file, you must use one
of the MATLAB import functions. Your choice of function depends on how
the data in the text file is formatted.

The text data must be formatted in a uniform pattern of rows and columns,
using a text character, called a delimiter or column separator, to separate
each data item. The delimiter can be a space, comma, semicolon, tab, or any
other character. The individual data items can be alphabetic or numeric
characters or a mix of both.

6-35

6 Data Import and Export

The text file can also contain one or more lines of text, called header lines, or
can use text headers to label each column or row. The following example
illustrates a tab-delimited text file with header text and row and column
headers.

To find out how your data is formatted, view it in a text editor. After you
determine the format, find the sample in the table below that most closely
resembles the format of your data. Then read the topic referred to in the table
for information on how to import that format.

Table 6-1 ASCII Data File Formats

Data Format Sample Import Options

1 2 3 4 5
6 7 8 9 10

See “Importing Numeric Text Data”
on page 6-37 or “Using the Import
Wizard” on page 6-11.

1; 2; 3; 4; 5
6; 7; 8; 9; 10
or
1, 2, 3, 4, 5
6, 7, 8, 9, 10

See “Importing Delimited ASCII Data
Files” on page 6-38 or “Using the
Import Wizard” on page 6-11.

Grade1 Grade2 Grade3
91.5 89.2 77.3
88.0 67.8 91.0
67.3 78.1 92.5

See“Importing Data with Text
Headers” on page 6-41 or “Using the
Import Wizard” on page 6-11.

Ann Type1 12.34 45 Yes
Joe Type2 45.67 67 No

See “Importing Mixed Alphabetic and
Numeric Data” on page 6-39.

6-36

Importing Text Data

If you are familiar with MATLAB import functions, but are not sure when to
use them, see the following table which compares the features of each function.

Table 6-2 ASCII Data Import Function Features

Function Data Type Delimiters Notes

csvread Numeric data Commas only Primarily used with
spreadsheet data.
See “Working with
Spreadsheets” on page
6-49.

dlmread Numeric data Any
character

Flexible and easy to
use.

fscanf Alphabetic and
numeric; however,
both types are
returned in a single
return variable

Any
character

Part of low-level file
I/O routines. Flexible,
but requires more
complex programming
on your part.

load Numeric data Space, tab,
comma, or
semicolon
character

Easy to use. File can
include MATLAB-style
comments.

textscan Alphabetic and
numeric data

Any
character

Flexible, powerful,
and easy to use. Use
format string to specify
conversions. File can
include headers and
any style of comments.

Importing Numeric Text Data
If your data file contains only numeric data, you can use many of the MATLAB
import functions (listed in ASCII Data Import Function Features on page
6-37), depending on how the data is delimited. If the data is rectangular,
that is, each row has the same number of elements, the simplest command
to use is the load command. (You can also use the load function to import
MAT-files, the MATLAB binary format for saving the workspace.)

6-37

6 Data Import and Export

For example, the file named my_data.txt contains two rows of numbers
delimited by space characters:

1 2 3 4 5
6 7 8 9 10

When you use load as a command, it imports the data and creates a variable
in the workspace with the same name as the filename, minus the file
extension:

load my_data.txt;
whos

Name Size Bytes Class

my_data 2x5 80 double array

my_data

my_data =
1 2 3 4 5
6 7 8 9 10

If you want to name the workspace variable something other than the
filename, use the functional form of load. In the following example, the data
from my_data.txt is loaded into the workspace variable A:

A = load('my_data.txt');

Importing Delimited ASCII Data Files
If your data file uses a character other than a space, tab, comma, or semicolon
as a delimiter, or you would like to read a portion of your data, you have a
choice of several import functions to use. (For a complete list, see ASCII Data
Import Function Features on page 6-37.) The simplest function for numeric
data is dlmread.

For example, consider a file named ph.dat whose contents are separated
by a vertical line:

7.2|8.5|6.2|6.6
5.4|9.2|8.1|7.2

6-38

Importing Text Data

To read the entire contents of this file into an array named A, enter

A = dlmread('ph.dat', '|');

You specify the delimiter used in the data file as the second argument to
dlmread. Note that, even though the last items in each row are not followed
by a delimiter, dlmread can still process the file correctly. dlmread ignores
space characters between data elements. So, the preceding dlmread command
works even if the contents of ph.dat are

7.2| 8.5| 6.2|6.6
5.4| 9.2 |8.1|7.2

Importing Mixed Alphabetic and Numeric Data
If your data file contains a mix of alphabetic and numeric ASCII data, the
simplest option for importing is the textscan function.

This example uses textscan to import the file mydata.dat as shown below:

Sally Type1 12.34 45 Yes
Larry Type2 34.56 54 Yes
Tommy Type1 67.89 23 No

To read the entire contents of the file mydata.dat into the workspace, specify
the name of the data file and the format string as arguments to textscan. In
the format string, you include conversion specifiers that define how you want
each data item to be interpreted. For example, specify %s for string data, %f
for floating-point data, and so on. (For a complete list of format specifiers, see
the textscan reference page.)

In this example, textscan reads the file mydata.dat, applying the format
string to each line in the file until the end of the file:

fid = fopen('mydata.dat');
mydata = textscan(fid, '%s %s %f %d %s');

mydata{:}
ans =

'Sally'
'Larry'
'Tommy'

6-39

6 Data Import and Export

ans =
'Type1'
'Type2'
'Type1'

ans =
12.3400
34.5600
67.8900

ans =
45
54
23

ans =
'Yes'
'Yes'
'No'

fclose(fid);

To remove the text 'Type' from each entry in the second column of the data,
add the literal 'Type' to the beginning of the conversion specifier as shown
below:

fid = fopen('mydata.dat');
mydata = textscan(fid, '%s Type%d %f %d %s');
fclose(fid);

Instead of returning a cell array of strings for mydata{2}, textscan returns a
numeric array of type int32:

mydata{2}
ans =

1
2
1

6-40

Importing Text Data

Importing Data with Text Headers
To import an ASCII data file that contains text headers, use the textscan
function.

textscan accepts a set of predefined parameters that control various aspects
of the conversion, including specifications for headers, delimiters, comments,
and empty values. (For a complete list of these parameters, see the textscan
reference page.)

Using the headerlines parameter, you can specify the number of lines at the
head of the file that textscan should ignore.

For example, the file grades.dat contains formatted numeric data with a
one-line text header:

Grade1 Grade2 Grade3
78.8 55.9 45.9
99.5 66.8 78.0
89.5 77.0 56.7

To import this data, first open the file, and then use this textscan command
to read the contents:

fid = fopen('grades.dat', 'r');
grades = textscan(fid, '%f %f %f', 'headerlines', 1);

grades{:}
ans =

78.8000
99.5000
89.5000

ans =
55.9000
66.8000
77.0000

ans =
45.9000
78.0000

6-41

6 Data Import and Export

56.7000

fclose(fid);

Importing Mixed Alphabetic and Numeric Data with a Delimiter
If your data uses a character other than a space as a delimiter, use the
textscan parameter 'delimiter' to specify the delimiter. For example, if the
file grades.dat used a semicolon as a delimiter, you would use this command:

grades = textscan(fid, '%f %f %f', 'headerlines', 1, 'delimiter', ';')

Importing Large Data Sets
An efficient way to read files with large data sets is to read the file in segments
and process the data as you go. This method requires significantly less
memory than if you were to try reading in the entire file at once. Using the
textscan function, you can read a specified amount of data from a file, and
maintain a pointer to the location in the file where your last read operation
ended and your next read is to begin.

This example opens a large data file and reads the file a segment at a time in
a for loop. The code calls textscan to read a particular pattern of data (as
specified by format) 10,000 times for each segment. Following each read, the
subfunction process_data processes the data collected in cell array segarray:

format = '%s %n %s %8.2f %8.2f %8.2f %8.2f %u8';
file_id = fopen('largefile.dat', 'r');

for k = 1:segcount
segarray = textscan(file_id, format, 10000);
process_data(segarray);

end

fclose(file_id);

Importing from XML Documents
With the xmlread function, you can read from a given URL or file, generating
a Document Object Model (DOM) node to represent the parsed document.

6-42

Importing Text Data

MATLAB also provides these other XML functions:

• xmlwrite— Serializes a Document Object Model node to a file

• xslt— Transforms an XML document using an XSLT engine

For more information, see the reference pages for these functions.

6-43

6 Data Import and Export

Exporting Text Data

In this section...

“Overview” on page 6-44
“Exporting Delimited ASCII Data Files” on page 6-46
“Using the diary Function to Export Data” on page 6-47
“Exporting to XML Documents” on page 6-48

Overview
This section describes how to use MATLAB functions to export data in several
common ASCII formats. For example, you can use these functions to export a
MATLAB matrix as a text file where the rows and columns are represented
as space-separated, numeric values. The function you use depends on the
amount of data you want to export and its format.

If you are not sure which section describes your data, refer to the table that
follows and find the sample in it that most nearly matches the data format
you want to create. Then read the section referred to in the table.

If you are familiar with MATLAB export functions, but are not sure when to
use them, see ASCII Data Export Function Features on page 6-45, which
compares the features of each function.

Note If C or Fortran routines for writing data files in the form needed
by other applications exist, create a MEX-file to write the data. For more
information, see the MATLAB External Interfaces documentation.

6-44

Exporting Text Data

Table 6-3 ASCII Data File Formats

Data Format
Sample MATLAB Export Function

1 2 3 4 5 6
7 8 9 10

See “Exporting Delimited ASCII Data Files” on page 6-46
and “Using the diary Function to Export Data” on page
6-47 for information about these options.

1; 2; 3; 4;
5; 6; 7; 8;
9; 10;

See “Exporting Delimited ASCII Data Files” on page 6-46.
The example shows a semicolon-delimited file, but you can
specify another character as the delimiter.

Table 6-4 ASCII Data Export Function Features

Function Use With Delimiters Notes

csvwrite Numeric
data

Commas only Primarily used with
spreadsheet data.
See “Working with
Spreadsheets” on page
6-49.

diary Numeric
data or cell
array

Spaces only Use for small arrays.
Requires editing of data
file to remove extraneous
text.

dlmwrite Numeric
data

Any character Easy to use, flexible.

fprintf Alphabetic
and numeric
data

Any character Part of low-level file I/O
routines. This function
is the most flexible, but
also the most difficult to
use. You must use fopen
to obtain a file identifier
before writing the data
and fclose to close the file
after writing the data.

save Numeric
data

Tabs or spaces Easy to use; output values
are high precision.

6-45

6 Data Import and Export

Exporting Delimited ASCII Data Files
To export an array as a delimited ASCII data file, you can use either the
save function, specifying the -ASCII qualifier, or the dlmwrite function. The
save function is easy to use; however, the dlmwrite function provides more
flexibility, allowing you to specify any character as a delimiter and to export
subsets of an array by specifying a range of values.

Using the save Function
To export the array A,

A = [1 2 3 4 ; 5 6 7 8];

use the save function, as follows:

save my_data.out A -ASCII

If you view the created file in a text editor, it looks like this:

1.0000000e+000 2.0000000e+000 3.0000000e+000 4.0000000e+000
5.0000000e+000 6.0000000e+000 7.0000000e+000 8.0000000e+000

By default, save uses spaces as delimiters, but you can use tabs instead of
spaces by specifying the -tabs option.

When you use save to write a character array to an ASCII file, it writes the
ASCII equivalent of the characters to the file. If you write the character string
'hello' to a file, save writes the values

104 101 108 108 111

Using the dlmwrite Function
To export an array in ASCII format and specify the delimiter used in the file,
use the dlmwrite function.

For example, to export the array A,

A = [1 2 3 4 ; 5 6 7 8];

as an ASCII data file that uses semicolons as a delimiter, use this command:

6-46

Exporting Text Data

dlmwrite('my_data.out',A, ';')

If you view the created file in a text editor, it looks like this:

1;2;3;4
5;6;7;8

Note that dlmwrite does not insert delimiters at the end of rows.

By default, if you do not specify a delimiter, dlmwrite uses a comma as a
delimiter. You can specify a space (' ') as a delimiter or, if you specify empty
quotes (''), no delimiter.

Using the diary Function to Export Data
To export small numeric arrays or cell arrays, you can use the diary function.
diary creates a verbatim copy of your MATLAB session in a disk file
(excluding graphics).

For example, if you have the array A in your workspace,

A = [1 2 3 4; 5 6 7 8];

execute these commands at the MATLAB prompt to export this array using
diary:

1 Turn on the diary function. You can optionally name the output file diary
creates.

diary my_data.out

2 Display the contents of the array you want to export. This example displays
the array A. You could also display a cell array or other MATLAB class.

A =
1 2 3 4
5 6 7 8

3 Turn off the diary function.

diary off

6-47

6 Data Import and Export

diary creates the file my_data.out and records all the commands executed
in the MATLAB session until it is turned off.

A =

1 2 3 4
5 6 7 8

diary off

4 Open the diary file my_data.out in a text editor and remove all the
extraneous text.

Exporting to XML Documents
With the xmlwrite function, you can serialize a Document Object Model
(DOM) node to an XML file.

MATLAB also provides these other XML functions:

• xmlread— Imports from a given URL or file to a Document Object Model
node

• xslt— Transforms an XML document using an XSLT engine

For more information, see the reference pages for these functions.

6-48

Working with Spreadsheets

Working with Spreadsheets

In this section...

“Microsoft® Excel Spreadsheets” on page 6-49
“Lotus 123 Spreadsheets” on page 6-55

Microsoft Excel Spreadsheets
This section includes:

• “Communicating with Excel Applications” on page 6-49

• “Getting Information about a File” on page 6-50

• “Exporting to a File” on page 6-50

• “Importing from a File” on page 6-51

• “Converting Dates” on page 6-53

Communicating with Excel Applications
Full functionality of the Excel import and export functions depends on the
availability of the Excel COM Server. This server is part of the typical
installation of Excel for Windows. If your system has Excel for Windows
installed, then the import and export functions can read or write any file
format recognized by your version of Excel.

However, if your system does not have Excel for Windows installed, or the
COM server is not available:

• xlswrite writes your data to a comma-separated value (CSV) file.

• The import functions (xlsread, importdata, and the Import Wizard) only
read XLS files compatible with Excel 97-2003.

• You can specify a worksheet to read in the Excel file with the xlsread
function, but you cannot specify a range of data. See the xlsread reference
page for additional information.

6-49

6 Data Import and Export

If you have Excel 2003 installed, but want to write to a 2007 format (such as
XLSX, XLSB, or XLSM), you must install the Office 2007 Compatibility Pack.

Note Large files in XLSX format might load very slowly. For better import
and export performance with Excel 2007 files, Microsoft recommends that you
use the XLSB format.

Getting Information about a File
Use the xlsfinfo function to determine whether a file contains a readable
Excel spreadsheet . For readable files, xlsfinfo returns the string
'Microsoft Excel Spreadsheet'. Otherwise, it returns an empty string
('').

You also can use xlsfinfo to identify the names of the worksheets in the file,
and to obtain the file format reported by Excel.

Example — Querying an XLS File. This example returns information
about spreadsheet file climate.xls:

[type, sheets] = xlsfinfo('climate.xls')

type =
Microsoft Excel Spreadsheet
sheets =

'Locations' 'Rainfall' 'Temperatures'

Exporting to a File
Use the xlswrite function to export a matrix to an Excel spreadsheet file.
With xlswrite, you can export data from the workspace to any worksheet
in the file, and to any location within that worksheet. By default, xlswrite
writes your matrix data to the first worksheet in the file, starting at cell A1.

Example — Writing To an XLS File. This example writes a mix of text and
numeric data to the file climate.xls. Call xlswrite, specifying a worksheet
labeled Temperatures, and the region within the worksheet where you want
to write the data. xlswrite writes the 4-by-2 matrix d to the rectangular
region that starts at cell E1 in its upper-left corner:

6-50

Working with Spreadsheets

d = {'Time', 'Temp'; 12 98; 13 99; 14 97}
d =

'Time' 'Temp'
[12] [98]
[13] [99]
[14] [97]

xlswrite('climate.xls', d, 'Temperatures', 'E1');

Adding a New Worksheet. If the target worksheet does not already exist
in the file, xlswrite displays the following warning:

Warning: Added specified worksheet.

You can disable these warnings with this command:

warning off MATLAB:xlswrite:AddSheet

Importing from a File
There are several ways to import data from an Excel spreadsheet file into the
MATLAB workspace:

• Use the Import Wizard. The simplest way to start the wizard is to select
Import Data from the File menu. The Import Wizard automatically
detects row and column headers, and gives you the option to create vectors
from each row or column. However, you cannot select the worksheet or
the range of data to import. For more information, see “Using the Import
Wizard” on page 6-11.

• Call the importdata function. This function imports spreadsheet data into
a structure. (For information on the fields in this structure, see Example
2.) As with the Import Wizard, you cannot select the worksheet or the
range of data to import. For additional information, see the importdata
reference page.

• Call the xlsread function. By default, xlsread imports all numeric data in
the first worksheet of the file into a matrix. You can specify the worksheet
and the range of data to import either by explicitly passing parameters to
xlsread, or by using the syntax xlsread(filename, -1). The -1 option
requests that xlsread open the file in an Excel window, so that you can

6-51

6 Data Import and Export

interactively select the worksheet and the range of data to import. For
more information on options and syntax, see the xlsread reference page.

All import options support XLS and XLSX formats. The importdata and
xlsread functions also import XLSB and XLSM formats, and xlsread
imports HTML-based formats.

Example 1 — Reading from an XLS File with xlsread. Consider the file
climate.xls created in the export example. To import only the numeric data
into a matrix, use xlsread with a single return argument. xlsread ignores
any leading row or column of text in the numeric result:

ndata = xlsread('climate.xls', 'Temperatures')
ndata =

12 98
13 99
14 97

To import both numeric data and text data, specify two return values for
xlsread:

[ndata, headertext] = xlsread('climate.xls', 'Temperatures')

headertext =
'Time' 'Temp'

ndata =
12 98
13 99
14 97

Example 2 — Reading from an XLS File with importdata. The
importdata function reads data from an Excel file into a structure.
Continuing the example above, where the data includes column headers, a
call of the form

climate = importdata('climate.xls') % with column headers

returns the nested structure array

climate =

6-52

Working with Spreadsheets

data: [1x1 struct]
textdata: [1x1 struct]

colheaders: [1x1 struct]

Structures created from Excel files with row headers include the field
rowheaders, which also contains a 1-by-1 structure.

The structure named data contains one field for each worksheet with numeric
data. The other structures contain one field for each worksheet with text
cells or headers. In this case:

climate.data =
Temperatures: [3x2 double]

climate.textdata =
Temperatures: {'Time' 'Temp'}

climate.colheaders =
Temperatures: {'Time' 'Temp'}

If the Excel file contains only numeric data (no row or column headers, and no
inner cells with text), the output structure is simpler (a 1-by-1 structure, with
one field for each worksheet with data).

For example, if the Temperatures worksheet in climate_nc.xls does not
include column headers, the call

ndata = importdata('climate_nc.xls') % only numeric data

returns

ndata =
Temperatures: [3x2 double]

Converting Dates
Both Excel and MATLAB applications represent numeric dates as a number
of serial days elapsed from a specific reference date. However, Excel and
MATLAB use different reference dates. Therefore, you must convert any

6-53

6 Data Import and Export

numeric date that you import or export before you process it in your target
application.

Note MATLAB functions import all formatted dates as strings. To import
a numeric date, the date field in Excel must have a numeric format. See
“Example 1 — Importing an Excel File with Numeric Dates” on page 6-54.

The following table lists the reference dates for MATLAB and Excel. For more
information on the 1900 and 1904 date systems, see the Excel help.

Application Reference Date

MATLAB January 0, 0000
Excel for Windows January 1, 1900
Excel for the Macintosh® January 2, 1904

Example 1 — Importing an Excel File with Numeric Dates. Consider
the file weight_log.xls with

Date Weight
10/31/96 174.8
11/29/96 179.3
12/30/96 190.4
01/31/97 185.7

To import this file, first convert the dates within Excel to a numeric format.
In Windows, the file now appears as

Date Weight
35369 174.8
35398 175.3
35429 190.4
35461 185.7

Import the file:

wt = xlsread('weight_log.xls');

6-54

Working with Spreadsheets

Convert the dates to the MATLAB reference date. If the file uses the 1900
date system (the default in Excel for Windows):

datecol = 1;
wt(:,datecol) = wt(:,datecol) + datenum('30-Dec-1899');

If the file uses the 1904 date system (the default in Excel for the Macintosh):

datecol = 1;
wt(:,datecol) = wt(:,datecol) + datenum('01-Jan-1904');

Example 2 — Exporting to an Excel File with Numeric Dates. To
export the wt matrix from the previous example to an Excel file, first convert
the dates according to the appropriate reference date. If you are exporting to
Excel for Windows (and plan to use the default 1900 date system), convert as
follows:

datecol = 1;
wt(:,datecol) = wt(:,datecol) - datenum('30-Dec-1899');
xlswrite('new_log.xls', wt);

If you are exporting to Excel for the Macintosh (and plan to use the default
1904 date system), convert as follows:

datecol = 1;
wt(:,datecol) = wt(:,datecol) - datenum('01-Jan-1904');
xlswrite('new_log.xls', wt);

Lotus 123 Spreadsheets
This section covers

• “Getting Information About the File” on page 6-56

• “Exporting to the File” on page 6-56

• “Importing from the File” on page 6-57

For more detailed information and examples, see the wk1finfo, wk1write,
and wk1read reference pages.

6-55

6 Data Import and Export

Getting Information About the File
Use the wk1finfo function to determine if a file contains a Lotus WK1
spreadsheet.

Inputs to wk1finfo are:

• Name of the spreadsheet file

Outputs from wk1finfo are:

• String 'WK1' if the file is a Lotus spreadsheet readable with the wk1read
function. Otherwise, it contains an empty string ('').

• String 'Lotus 123 Spreadsheet'

Example — Querying a WK1 File. This example returns information
about spreadsheet file matA.wk1:

[extens, type] = wk1finfo('matA.wk1')

extens =
WK1

type =
Lotus 123 Spreadsheet

Exporting to the File
Use the wk1write function to export a matrix to a Lotus spreadsheet file. You
have the choice of positioning the matrix starting at the first row and column
of the spreadsheet, or at any other location in the file.

To export to a specific location in the file, use the second syntax, indicating a
zero-based starting row and column.

Inputs to wk1write are:

• Name of the spreadsheet file

• Matrix to be exported

• Location in the file in which to write the data

6-56

Working with Spreadsheets

Example — Writing to a WK1 File. This example exports an 8-by-8 matrix
to spreadsheet file matA.wk1:

A = [1:8; 11:18; 21:28; 31:38; 41:48; 51:58; 61:68; 71:78];
A =

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
71 72 73 74 75 76 77 78

wk1write('matA.wk1', A);

Importing from the File
To import data from the spreadsheet into the MATLAB workspace, use
wk1read. There are three ways to call wk1read. The first two shown here are
similar to wk1write. The third enables you to select a range of values from
the spreadsheet. You can specify the range argument with a one-based vector,
spreadsheet notation (e.g., 'A1..B7'), or using a named range (e.g., 'Sales').

Inputs to wk1read are:

• Name of the spreadsheet file

• Spreadsheet location from which to read the data

• Range of cells from which to read the data

Outputs from wk1read are:

• Requested data from the spreadsheet

6-57

6 Data Import and Export

Example — Reading from a WK1 File. Read in a limited block of the
spreadsheet data by specifying the upper-left row and column of the block
using zero-based indexing:

M = wk1read('matA.wk1', 3, 2)
M =

33 34 35 36 37 38
43 44 45 46 47 48
53 54 55 56 57 58
63 64 65 66 67 68
73 74 75 76 77 78

6-58

Working with Graphics Files

Working with Graphics Files

In this section...

“Getting Information About Graphics Files” on page 6-59
“Importing Graphics Data” on page 6-60
“Exporting Graphics Data” on page 6-60

Getting Information About Graphics Files
If you have a file in a standard graphics format, use the imfinfo function to
get information about its contents. The imfinfo function returns a structure
containing information about the file. The fields in the structure vary with
the file format, but imfinfo always returns some basic information including
filename, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts
Group (JPEG) format:

info = imfinfo('ngc6543a.jpg')

info =

Filename: [1x57 char]
FileModDate: '01-Oct-1996 16:19:44'

FileSize: 27387
Format: 'jpg'

FormatVersion: ''
Width: 600

Height: 650
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''
NumberOfSamples: 3

CodingMethod: 'Huffman'
CodingProcess: 'Sequential'

Comment: {[1x69 char]}

6-59

6 Data Import and Export

Importing Graphics Data
To import data into the MATLAB workspace from a graphics file, use the
imread function. Using this function, you can import data from files in many
standard file formats, including the Tagged Image File Format (TIFF),
Graphics Interchange Format (GIF), Joint Photographic Experts Group
(JPEG), and Portable Network Graphics (PNG) formats. For a complete list of
supported formats, see the imread reference page.

This example reads the image data stored in a file in JPEG format into the
MATLAB workspace as the array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of
class uint8. The dimensions of the array depend on the format of the data.
For example, imread uses three dimensions to represent RGB color images:

whos I
Name Size Bytes Class

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

Exporting Graphics Data
To export data from the MATLAB workspace using one of the standard
graphics file formats, use the imwrite function. Using this function, you can
export data in formats such as the Tagged Image File Format (TIFF), Joint
Photographic Experts Group (JPEG), and Portable Network Graphics (PNG).
For a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from
the MATLAB workspace into a file in TIFF format. The class of the output
image written to the file depends on the format specified. For most formats, if
the input array is of class uint8, imwrite outputs the data as 8-bit values.
See the imwrite reference page for details.

whos I
Name Size Bytes Class

6-60

Working with Graphics Files

I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics_file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats.
For example, with TIFF file format, you can specify the type of compression
MATLAB uses to store the image. See the imwrite reference page for details.

6-61

6 Data Import and Export

Working with Audio and Video Data

In this section...

“Getting Information About Audio/Video Files” on page 6-62
“Importing Audio/Video Data” on page 6-62
“Exporting Audio/Video Data” on page 6-64

Getting Information About Audio/Video Files
The MATLAB software includes several functions that you can use to get
information about files that contain audio data, video data, or both. Some
work only with specific file formats. One function, the mmfileinfo function,
can retrieve information about many file formats.

Format-Specific Functions
MATLAB includes several functions that return information about files that
contain audio and video data in specific formats.

• aufinfo— Returns a text description of the contents of a sound (AU) file

• aviinfo— Returns a structure containing information about the contents
of an Audio/Video Interleaved (AVI) file

• wavfinfo— Returns a text description of the contents of a sound (WAV) file

Using the General Multimedia Information Function
MATLAB also includes a general-purpose, audio/video file information
function named mmfileinfo. The mmfileinfo function returns information
about both the audio data in a file and the video data in the file, if present.

Note You can use mmfileinfo only on Microsoft Windows systems.

Importing Audio/Video Data
MATLAB includes several functions that you can use to bring audio or video
data into the MATLAB workspace. Some of these functions read audio or

6-62

Working with Audio and Video Data

video data from files. Another way to import audio data into the MATLAB
workspace is to record it using an audio input device, such as a microphone.
The following sections describe

• “Reading Audio and Video Data from a File” on page 6-63

• “Recording Audio Data” on page 6-63

Reading Audio and Video Data from a File
MATLAB includes several functions for reading audio or video data from a
file. These files are format-specific.

• auread— Returns sound data from a sound (AU) file

• aviread — Returns AVI data as a MATLAB movie

• mmreader — Returns AVI, MPG, or WMV video data

• wavread— Returns sound data from a sound (WAV) file

Note You can use mmreader only on Microsoft Windows systems.

Recording Audio Data
To bring sound data into the MATLAB workspace by recording it from an
audio input device, use the audio recorder object. This object represents
the connection between MATLAB and an audio input device, such as a
microphone, that is connected to your system. You use the audiorecorder
function to create this object, and then you use methods and properties of
the object to record the audio data.

On PCs running the Windows operating system, you also can use the
wavrecord function to bring live audio data in WAV format into the MATLAB
workspace.

Once you import audio data, MATLAB supports several ways to listen to the
data. You can use an audio player object to play the audio data. Use the
audioplayer function to create an audio player object.

6-63

6 Data Import and Export

You also can use the sound or soundsc function.

On PCs running the Windows operating system, you can use the wavplay
function to listen to .wav files.

Exporting Audio/Video Data
MATLAB includes several functions that you can use to export audio or video
data from the MATLAB workspace. These functions write audio data to a file
using specific file formats. The following sections describe

• “Exporting Audio Data” on page 6-64

• “Exporting Video Data in AVI Format” on page 6-64

For an example of writing video data to a file, see “Example: Creating an
AVI file” on page 6-65.

Exporting Audio Data
In MATLAB, audio data is simply numeric data that you can export using
standard MATLAB data export functions, such as save.

MATLAB also includes several functions that write audio data to files in
specific file formats:

• auwrite — Exports sound data in AU file format

• wavwrite — Exports sound data in WAV file format

Exporting Video Data in AVI Format
You can export MATLAB video data as an Audio/Video Interleaved (AVI) file.
To do this, you use the avifile function to create an avifile object. When
you have the object, you can use AVI file object methods and properties to
control various aspects of the data export process.

For example, in MATLAB, you can save a sequence of graphs as a movie that
you then can play back using the movie function. You can export a MATLAB
movie by saving it in MAT-file format, like any other MATLAB workspace
variable. (However, only people running MATLAB can view your movie.) For

6-64

Working with Audio and Video Data

more information about MATLAB movies, see the Animation section in the
MATLAB Graphics documentation.

To export a sequence of MATLAB graphs in a format that does not require
MATLAB for viewing, save the figures in Audio/Video Interleaved (AVI)
format. AVI is a file format that allows animation and video clips to be played
on a PC running Windows or The Open Group UNIX operating systems.

Note To convert an existing MATLAB movie into an AVI file, use the
movie2avi function.

Example: Creating an AVI file
To export a sequence of MATLAB graphs as an AVI format movie, perform
these steps:

1 Create an AVI file object, using the avifile function.

aviobj = avifile('mymovie.avi','fps',5);

AVI file objects support properties that let you control various
characteristics of the AVI movie, such as colormap, compression, and
quality. (For a complete list, see the avifile reference page.) avifile uses
default values for all properties, unless you specify a value. The example
sets the value of the frames per second (fps) property.

2 Capture the sequence of graphs and put them into the AVI file, using the
addframe function.

for k=1:25
h = plot(fft(eye(k+16)));
axis equal;
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

The example uses a for loop to capture the series of graphs to be included
in the movie. You typically use addframe to capture a sequence of graphs
for AVI movies. However, because this particular MATLAB animation uses

6-65

6 Data Import and Export

XOR graphics, you must call getframe to capture the graphs, and then call
addframe to add the captured frame to the movie.

3 Close the AVI file, using the close function.

aviobj = close(aviobj);

6-66

Using Low-Level File I/O Functions

Using Low-Level File I/O Functions

In this section...

“Overview” on page 6-67
“Opening Files” on page 6-68
“Reading Binary Data” on page 6-70
“Writing Binary Data” on page 6-72
“Controlling Position in a File” on page 6-72
“Reading Strings Line by Line from Text Files” on page 6-75
“Reading Formatted ASCII Data” on page 6-76
“Writing Formatted Text Files” on page 6-77
“Closing a File” on page 6-78

Overview
The MATLAB product includes a set of low-level file I/O functions that are
based on the I/O functions of the American National Standards Institute’s
ANSI® Standard C Library. If you know C, you are probably familiar with
these routines.

To read or write data, perform these steps:

1 Open the file, using fopen. fopen returns a file identifier that you use with
all the other low-level file I/O routines.

2 Operate on the file.

a Read binary data, using fread.

b Write binary data, using fwrite.

c Read text strings from a file line-by-line, using fgets or fgetl.

d Read formatted ASCII data, using fscanf.

e Write formatted ASCII data, using fprintf.

3 Close the file, using fclose.

6-67

6 Data Import and Export

This section also describes how these functions affect the current position
in the file where read or write operations happen and how you can change
the position in the file.

Note While the MATLAB file I/O commands are modeled on the C language
I/O routines, in some ways their behavior is different. For example, the fread
function is vectorized; that is, it continues reading until it encounters a text
string or the end of file. These sections, and the MATLAB reference pages for
these functions, highlight any differences in behavior.

Opening Files
Before reading or writing a text or binary file, you must open it with the
fopen command.

fid = fopen('filename','permission')

Specifying the Permission String
The permission string specifies the kind of access to the file you require.
Possible permission strings include:

• r for reading only

• w for writing only

• a for appending only

• r+ for both reading and writing

Note Systems such as Microsoft Windows operating systems that distinguish
between text and binary files might require additional characters in the
permission string, such as 'rb' to open a binary file for reading.

Using the Returned File Identifier (fid)
If successful, fopen returns a nonnegative integer, called a file identifier
(fid). You pass this value as an argument to the other I/O functions to access

6-68

Using Low-Level File I/O Functions

the open file. For example, this fopen statement opens the data file named
penny.dat for reading:

fid = fopen('penny.dat','r')

If fopen fails, for example if you try to open a file that does not exist, fopen
does the following:

• Assigns -1 to the file identifier.

• Assigns an error message to an optional second output argument. Note
that the error messages are system dependent and are not provided for all
errors on all systems. The function ferror also can provide information
about errors.

Test the file identifier each time you open a file in your code. For example,
this code loops until a readable filename is entered:

fid=0;
while fid < 1

filename=input('Open file: ', 's');
[fid,message] = fopen(filename, 'r');
if fid == -1

disp(message)
end

end

When you run this code, if you specify a file that doesn’t exist, such as
nofile.mat, at the Open file: prompt, the results are as follows:

Open file: nofile.mat
Sorry. No help in figuring out the problem . . .

If you specify a file that does exist, such as goodfile.mat, the code example
returns the file identifier, fid, and exits the loop:

Open file: goodfile.mat

6-69

6 Data Import and Export

Opening Temporary Files and Directories
The tempdir and tempname functions assist in locating temporary data on
your system.

Function Purpose

tempdir Get temporary directory name.
tempname Get temporary filename.

Use these functions to create temporary files. Some systems delete temporary
files every time you reboot the system. On other systems, designating a file as
temporary can mean only that the file is not backed up.

The tempdir function returns the name of the directory or folder that has
been designated to hold temporary files on your system. For example, issuing
tempdir on The Open Group UNIX systems returns the /tmp directory.

MATLAB also provides a tempname function that returns a filename in the
temporary directory. The returned filename is a suitable destination for
temporary data. For example, if you need to store some data in a temporary
file, then you might issue the following command first:

fid = fopen(tempname, 'w');

Note The filename that tempname generates is not guaranteed to be unique;
however, it is likely to be so.

Reading Binary Data
The fread function reads all or part of a binary file (as specified by a file
identifier) and stores it in a matrix. In its simplest form, it reads an entire
file and interprets each byte of input as the next element of the matrix. For
example, the following code reads the data from a file named nickel.dat
into matrix A:

fid = fopen('nickel.dat','r');
A = fread(fid);

6-70

Using Low-Level File I/O Functions

To echo the data to the screen after reading it, use char to display the contents
of A as characters, transposing the data so it is displayed horizontally:

disp(char(A'))

The char function causes MATLAB to interpret the contents of A as characters
instead of as numbers. Transposing A displays it in its more natural
horizontal format.

Controlling the Number of Values Read
fread accepts an optional second argument that controls the number of
values read (if unspecified, the default is the entire file). For example, this
statement reads the first 100 data values of the file specified by fid into the
column vector A.

A = fread(fid,100);

Replacing the number 100 with the matrix dimensions [10 10] reads the
same 100 elements into a 10-by-10 array.

Controlling the Data Type of Each Value
An optional third argument to fread controls the class of the input. The
class argument controls both the number of bits read for each value and the
interpretation of those bits as character, integer, or floating-point values.
MATLAB supports a wide range of precisions, which you can specify with
MATLAB specific strings or their C or Fortran equivalents.

Some common precisions include:

• 'char' and 'uchar' for signed and unsigned characters (usually 8 bits)

• 'short' and 'long' for short and long integers (usually 16 and 32 bits,
respectively)

• 'float' and 'double' for single- and double-precision floating-point
values (usually 32 and 64 bits, respectively)

6-71

6 Data Import and Export

Note The meaning of a given precision can vary across different hardware
platforms. For example, a 'uchar' is not always 8 bits. fread also provides
a number of more specific precisions, such as 'int8' and 'float32'. If in
doubt, use precisions that are not platform dependent. For a complete list of
precisions, see fread.

For example, if fid refers to an open file containing single-precision
floating-point values, then the following command reads the next 10
floating-point values into a column vector A:

A = fread(fid,10,'float');

Writing Binary Data
The fwrite function writes the elements of a matrix to a file in a specified
numeric precision, returning the number of values written. For instance,
these lines create a 100-byte binary file containing the 25 elements of the
5-by-5 magic square, each stored as 4-byte integers:

fwriteid = fopen('magic5.bin','w');
count = fwrite(fwriteid,magic(5),'int32');
status = fclose(fwriteid);

In this case, fwrite sets the count variable to 25 unless an error occurs, in
which case the value is less.

Controlling Position in a File
When you open a file with fopen, MATLAB maintains a file position indicator
that specifies a particular location within a file. MATLAB uses the file
position indicator to determine where in the file the next read or write
operation will begin. The following sections describe how to:

• Determine whether the file position indicator is at the end of the file

• Move to a specific location in the file

• Retrieve the current location of the file position indicator

• Reset the file position indicator to the beginning of the file

6-72

Using Low-Level File I/O Functions

Setting and Querying the File Position
The fseek and ftell functions enable you to set and query the position in the
file at which the next input or output operation takes place:

• The fseek function repositions the file position indicator, letting you skip
over data or back up to an earlier part of the file.

• The ftell function gives the offset in bytes of the file position indicator for
a specified file.

The syntax for fseek is

status = fseek(fid,offset,origin)

fid is the file identifier for the file. offset is a positive or negative offset
value, specified in bytes. origin is one of the following strings that specify
the location in the file from which to calculate the position.

'bof' Beginning of file
'cof' Current position in file
'eof' End of file

Example of Using fseek And ftell
To see how fseek and ftell work, consider this short M-file:

A = 1:5;
fid = fopen('five.bin','w');
fwrite(fid, A,'short');
status = fclose(fid);

This code writes out the numbers 1 through 5 to a binary file named five.bin.
The call to fwrite specifies that each numerical element be stored as a short.
Consequently, each number uses 2 storage bytes.

Now reopen five.bin for reading:

fid = fopen('five.bin','r');

6-73

6 Data Import and Export

This call to fseek moves the file position indicator forward 6 bytes from the
beginning of the file:

status = fseek(fid,6,'bof');

This call to fread reads whatever is at file positions 7 and 8 and stores it
in variable four:

four = fread(fid,1,'short');

The act of reading advances the file position indicator. To determine the
current file position indicator, call ftell:

position = ftell(fid)

position =

8

This call to fseek moves the file position indicator back 4 bytes:

status = fseek(fid,-4,'cof');

Calling fread again reads in the next value (3):

three = fread(fid,1,'short');

6-74

Using Low-Level File I/O Functions

Reading Strings Line by Line from Text Files
MATLAB provides two functions, fgetl and fgets, that read lines from
formatted text files and store them in string vectors. The two functions are
almost identical; the only difference is that fgets copies the newline character
to the string vector, but fgetl does not.

The following M-file function demonstrates a possible use of fgetl. This
function uses fgetl to read an entire file one line at a time. For each line,
the function determines whether an input literal string (literal) appears in
the line.

If it does, the function prints the entire line preceded by the number of times
the literal string appears on the line.

function y = litcount(filename, literal)
% Search for number of string matches per line.

fid = fopen(filename, 'rt');
y = 0;
while feof(fid) == 0

tline = fgetl(fid);
matches = findstr(tline, literal);
num = length(matches);
if num > 0

y = y + num;
fprintf(1,'%d:%s\n',num,tline);

end
end
fclose(fid);

For example, consider the following input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times the string 'an' appears in this file, use litcount:

litcount('badpoem','an')
2: Oranges and lemons,

6-75

6 Data Import and Export

1: Pineapples and tea.
3: Orangutans and monkeys,

Reading Formatted ASCII Data
The MATLAB fscanf function is like the fscanf function in standard C. Both
functions operate in a similar manner, reading data from a file and assigning
it to one or more variables. Both functions use the same set of conversion
specifiers to control the interpretation of the input data.

The conversion specifiers for fscanf begin with a % character; common
conversion specifiers include the following.

Conversion Specifier Description

%s Match a string.
%d Match an integer in base 10 format.
%g Match a double-precision floating-point value.

You also can specify that fscanf skip a value by specifying an asterisk in a
conversion specifier. For example, %*f means skip the floating-point value in
the input data; %*d means skip the integer value in the input data.

Differences Between the MATLAB fscanf and the C fscanf
Despite all the similarities between the MATLAB and C versions of fscanf,
there are some significant differences. For example, consider a file named
moon.dat for which the contents are as follows:

3.654234533
2.71343142314
5.34134135678

The following code reads all three elements of this file into a matrix named
MyData:

fid = fopen('moon.dat','r');
MyData = fscanf(fid,'%g');
status = fclose(fid);

6-76

Using Low-Level File I/O Functions

Notice that this code does not use any loops. Instead, the fscanf function
continues to read in text as long as the input format is compatible with the
format specifier.

An optional size argument controls the number of matrix elements read. For
example, if fid refers to an open file containing strings of integers, then this
line reads 100 integer values into the column vector A:

A = fscanf(fid,'%5d',100);

This line reads 100 integer values into the 10-by-10 matrix A:

A = fscanf(fid,'%5d',[10 10]);

A related function, sscanf, takes its input from a string instead of a file. For
example, this line returns a column vector containing 2 and its square root:

root2 = num2str([2, sqrt(2)]);
rootvalues = sscanf(root2,'%f');

Writing Formatted Text Files
The fprintf function converts data to character strings and outputs them to
the screen or a file. A format control string containing conversion specifiers
and any optional text specify the output format. The conversion specifiers
control the output of array elements; fprintf copies text directly.

Common conversion specifiers include

Conversion Specifier Description

%e Exponential notation
%f Fixed-point notation
%g Automatically select the shorter of %e and %f

Optional fields in the format specifier control the minimum field width and
precision. For example, this code creates a text file containing a short table
of the exponential function:

x = 0:0.1:1;
y = [x; exp(x)];

6-77

6 Data Import and Export

The code below writes x and y into a newly created file named exptable.txt:

fid = fopen('exptable.txt','w');
fprintf(fid,'Exponential Function\n\n');
fprintf(fid,'%6.2f %12.8f\n',y);
status = fclose(fid);

The first call to fprintf outputs a title, followed by two carriage returns.
The second call to fprintf outputs the table of numbers. The format control
string specifies the format for each line of the table:

• A fixed-point value of 6 characters with two decimal places

• Two spaces

• A fixed-point value of 12 characters with eight decimal places

fprintf converts the elements of array y in column order. The function uses
the format string repeatedly until it converts all the array elements.

Now use fscanf to read the exponential data file:

fid = fopen('exptable.txt','r');
title = fgetl(fid);
[table,count] = fscanf(fid,'%f %f',[2 11]);
table = table';
status = fclose(fid);

The second line reads the file title. The third line reads the table of values,
two floating-point values on each line, until it reaches end of file. count
returns the number of values matched.

A function related to fprintf, sprintf, outputs its results to a string instead
of a file or the screen. For example:

root2 = sprintf('The square root of %f is %10.8e.\n',2,sqrt(2));

Closing a File
When you finish reading or writing, use fclose to close the file. For example,
this line closes the file associated with file identifier fid:

status = fclose(fid);

6-78

Using Low-Level File I/O Functions

This line closes all open files:

status = fclose('all');

Both forms return 0 if the file or files were successfully closed or -1 if the
attempt was unsuccessful.

MATLAB automatically closes all open files when you exit from MATLAB. It
is still good practice, however, to close a file explicitly with fclose when you
are finished using it. Not doing so can unnecessarily drain system resources.

Note Closing a file does not clear the file identifier variable fid. Therefore,
subsequent attempts to access a file through this file identifier variable will
not work.

6-79

6 Data Import and Export

Accessing Files with Memory-Mapping

In this section...

“Overview of Memory-Mapping” on page 6-80
“The memmapfile Class” on page 6-84
“Constructing a memmapfile Object” on page 6-86
“Reading a Mapped File” on page 6-100
“Writing to a Mapped File” on page 6-105
“Methods of the memmapfile Class” on page 6-113
“Deleting a Memory Map” on page 6-115
“Memory-Mapping Demo” on page 6-116

Overview of Memory-Mapping
Memory-mapping is a mechanism that maps a portion of a file, or an entire
file, on disk to a range of addresses within an application’s address space. The
application can then access files on disk in the same way it accesses dynamic
memory. This makes file reads and writes faster in comparison with using
functions such as fread and fwrite.

Another advantage of using memory-mapping in your MATLAB application
is that it enables you to access file data using standard MATLAB indexing
operations. Once you have mapped a file to memory, you can read the contents
of that file using the same type of MATLAB statements used to read variables
from the MATLAB workspace. The contents of the mapped file appear as if
they were an array in the currently active workspace. You simply index into
this array to read or write the desired data from the file.

This section describes the benefits and limitations of memory-mapping
in MATLAB. The last part of this section gives details on which types of
applications derive the greatest advantage from using memory-mapping:

• “Benefits of Memory-Mapping” on page 6-81

• “Limitations of MATLAB Memory-Mapping” on page 6-82

• “When to Use Memory-Mapping” on page 6-83

6-80

Accessing Files with Memory-Mapping

Benefits of Memory-Mapping
The principal benefits of memory-mapping are efficiency, faster file access, the
ability to share memory between applications, and more efficient coding.

Faster File Access. Accessing files via memory map is faster than using I/O
functions such as fread and fwrite. Data are read and written using the
virtual memory capabilities that are built in to the operating system rather
than having to allocate, copy into, and then deallocate data buffers owned by
the process.

MATLAB does not access data from the disk when the map is first constructed.
It only reads or writes the file on disk when a specified part of the memory
map is accessed, and then it only reads that specific part. This provides faster
random access to the mapped data.

Efficiency. Mapping a file into memory allows access to data in the file as
if that data had been read into an array in the application’s address space.
Initially, MATLAB only allocates address space for the array; it does not
actually read data from the file until you access the mapped region. As a
result, memory-mapped files provide a mechanism by which applications can
access data segments in an extremely large file without having to read the
entire file into memory first.

Efficient Coding Style. Memory-mapping eliminates the need for
explicit calls to the fread and fwrite functions. In MATLAB, if x is a
memory-mapped variable, and y is the data to be written to a file, then
writing to the file is as simple as

x.Data = y;

6-81

6 Data Import and Export

Sharing Memory Between Applications. Memory-mapped files also
provide a mechanism for sharing data between applications, as shown in the
figure below. This is achieved by having each application map sections of
the same file. You can use this feature to transfer large data sets between
MATLAB and other applications.

Also, within a single application, you can map the same segment of a file
more than once.

Limitations of MATLAB Memory-Mapping
MATLAB restricts the size of a memory map to 2 gigabytes, and on some
platforms, requires that you set up your memory-mapping so that all data
access is aligned properly. See the following section, “Maximum Size of a
Memory Map”, for more information.

6-82

Accessing Files with Memory-Mapping

Maximum Size of a Memory Map. Due to limits set by the operating
system and MATLAB, the maximum amount of data you can map with a
single instance of a memory map is 2 gigabytes on 32-bit systems, and 256
terabytes on 64-bit systems. If you need to map more than this limit, you can
either create separate maps for different regions of the file, or you can move
the window of one map to different locations in the file.

Aligned Access on Sol64. The Sol64 platform only supports aligned data
access. This means that numeric values of type double that are to be read
from a memory-mapped file must start at some multiple of 8 bytes from the
start of the file. (Note that this is from the start of the file, and not the start
of the mapped region.) Furthermore, numeric values of type single and
also 32-bit integers must start at multiples of 4 bytes, and 16-bit integers at
2-byte multiples.

If you attempt to map a file on Sol64, which does not take into account these
alignment considerations, MATLAB generates an error.

Byte Ordering
Memory-mapping works only with data that have the same byte ordering
scheme as the native byte ordering of your operating system. For example,
because both Linus Torvald’s Linux and Microsoft Windows systems use
little-endian byte ordering, data created on a Linux system can be read on
Windows systems. You can use the computer function to determine the native
byte ordering of your current system.

When to Use Memory-Mapping
Just how much advantage you get from mapping a file to memory depends
mostly on the size and format of the file, the way in which data in the file is
used, and the computer platform you are using.

When Memory-Mapping Is Most Useful. Memory-mapping works best
with binary files, and in the following scenarios:

• For large files that you want to access randomly one or more times

• For small files that you want to read into memory once and access
frequently

6-83

6 Data Import and Export

• For data that you want to share between applications

• When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant. The following types of files do
not fully use the benefits of memory-mapping:

• Formatted binary files like HDF or TIFF that require customized readers
are not good for memory-mapping. Describing the data contained in these
files can be a very complex task. Also, you cannot access data directly from
the mapped segment, but must instead create arrays to hold the data.

• Text or ASCII files require that you convert the text in the mapped region
to an appropriate type for the data to be meaningful. This takes up
additional address space.

• Files that are larger than several hundred megabytes in size consume a
significant amount of the virtual address space needed by MATLAB to
process your program. Mapping files of this size may result in MATLAB
reporting out-of-memory errors more often. This is more likely if MATLAB
has been running for some time, or if the memory used by MATLAB
becomes fragmented.

The memmapfile Class
MATLAB implements memory-mapping using an object-oriented class called
memmapfile. The memmapfile class has the properties and methods you need
to map to a file, read and write the file via the map, and remove the map from
memory when you are done.

Properties of the memmapfile Class
There are six properties defined for the memmapfile class. These are shown in
the table below. These properties control which file is being mapped, where in
the file the mapping is to begin and end, how the contents of the file are to
be formatted, and whether or not the file is writable. One property of the file
contains the file data itself.

Property Description Data Type Default

Data Contains the data read from the file or to be written
to the file. (See “Reading a Mapped File” on page
6-100 and “Writing to a Mapped File” on page 6-105)

Any of the
numeric
types

None

6-84

Accessing Files with Memory-Mapping

Property Description Data Type Default

Filename Path and name of the file to map into memory. (See
“Selecting the File to Map” on page 6-89)

char array None

Format Format of the contents of the mapped region,
including class, array shape, and variable or field
name by which to access the data. (See “Identifying
the Contents of the Mapped Region” on page 6-91)

char array
or N-by-3
cell array

uint8

Offset Number of bytes from the start of the file to the start
of the mapped region. This number is zero-based.
That is, offset 0 represents the start of the file. Must
be a nonnegative integer value. (See “Setting the
Start of the Mapped Region” on page 6-90)

double 0

Repeat Number of times to apply the specified format to the
mapped region of the file. Must be a positive integer
value or Inf. (See “Repeating a Format Scheme” on
page 6-98)

double Inf

Writable Type of access allowed to the mapped region. Must
be logical 1 or logical 0. (See “Setting the Type of
Access” on page 6-99)

logical false

You can set the values for any property except for Data at the time you call
the memmapfile constructor, or at any time after that while the map is still
valid. Any properties that are not explicitly set when you construct the object
are given their default values as shown in the table above. For information on
calling the constructor, see “Constructing a memmapfile Object” on page 6-86.

Once a memmapfile object has been constructed, you can change the value of
any of its properties. Use the objname.property syntax in assigning the new
value. For example, to set a new Offset value for memory map object m, type

m.Offset = 2048;

Note Property names are not case sensitive. For example, MATLAB
considers m.offset to be the same as m.Offset.

6-85

6 Data Import and Export

To display the value of all properties of a memmapfile object, simply type the
object name. For a memmapfile object m, typing the variable name m displays
the following. Note that this example requires the file records.dat which
you will create at the beginning of the next section.

m =
Filename: 'records.dat'
Writable: true

Offset: 1024
Format: 'uint32'
Repeat: Inf

Data: 4778x1 uint32 array

To display the value of any individual property, for example the Writable
property of object m, type

m.Writable
ans =

true

Constructing a memmapfile Object
The first step in mapping to any file is to construct an instance of the
memmapfile class using the class constructor function. You can have MATLAB
assign default values to each of the new object’s properties, or you can specify
property values yourself in the call to the memmapfile constructor.

For information on how to set these values, see these sections:

• “Constructing the Object with Default Property Values” on page 6-87

• “Changing Property Values” on page 6-88

• “Selecting the File to Map” on page 6-89

• “Setting the Start of the Mapped Region” on page 6-90

• “Identifying the Contents of the Mapped Region” on page 6-91

• “Mapping of the Example File” on page 6-96

• “Repeating a Format Scheme” on page 6-98

• “Setting the Type of Access” on page 6-99

6-86

Accessing Files with Memory-Mapping

All the examples in this section use a file named records.dat that contains
a 5000-by-1 matrix of double-precision floating point numbers. Use the
following code to generate this file before going on to the next sections of this
documentation.

First, save this function in your current working directory:

function gendatafile(filename, count)
dmax32 = double(intmax('uint32'));
rand('state', 0)

fid = fopen(filename,'w');
fwrite(fid, rand(count,1)*dmax32, 'double');
fclose(fid);

Now execute the gendatafile function to generate the records.dat file
that is referenced in this section. You can use this function at any time
to regenerate the file:

gendatafile('records.dat', 5000);

Constructing the Object with Default Property Values
The simplest and most general way to call the constructor is with one input
argument that specifies the name of the file you want to map. All other
properties are optional and are given their default values. Use the syntax
shown here:

objname = memmapfile(filename)

To construct a map for the file records.dat that resides in your current
working directory, type the following:

m = memmapfile('records.dat')
m =

Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 0
Format: 'uint8'
Repeat: Inf

Data: 40000x1 uint8 array

6-87

6 Data Import and Export

MATLAB constructs an instance of the memmapfile class, assigns it to the
variable m, and maps the entire records.dat file to memory, setting all
object properties to their default values. In this example, the command maps
the entire file as a sequence of unsigned 8-bit integers and gives the caller
read-only access to its contents.

Changing Property Values
You can make the memory map more specific to your needs by including
more information when calling the constructor. In addition to the filename
argument, there are four other parameters that you can pass to the
constructor. Each of these parameters represents a property of the object, and
each requires an accompanying value to be passed, as well:

objname = memmapfile(filename, prop1, value1, prop2, value2, ...)

For example, to construct a map using nondefault values for the Offset,
Format, and Writable properties, type the following, enclosing all property
names and string parameter values in quotes:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', 'double', ...
'Writable', true);

Type the object name to see the current settings for all properties:

m

m =
Filename: 'd:\matlab\mfiles\records.dat'
Writable: true

Offset: 1024
Format: 'double'
Repeat: Inf

Data: 4872x1 double array

You can also change the value of any property after the object has been
constructed. Use the syntax:

objname.property = newvalue;

6-88

Accessing Files with Memory-Mapping

For example, to set the format to uint16, type the following. (Property names,
like Format, are not case sensitive.)

m.format = 'uint16'
m =

Filename: 'd:\matlab\mfiles\records.dat'
Writable: true

Offset: 1024
Format: 'uint16'
Repeat: Inf

Data: 19488x1 uint16 array

Further read and write operations to the region mapped by m now treat the
data in the file as a sequence of unsigned 16-bit integers. Whenever you
change the value of a memmapfile property, MATLAB remaps the file to
memory.

Selecting the File to Map
filename is the only required argument when you call the memmapfile
constructor. When you call the memmapfile constructor, MATLAB assigns the
file name that you specify to the Filename property of the new object instance.

Specify the file name as a quoted string, (e.g., 'records.dat'). It must be first
in the argument list and not specified as a parameter-value pair. filename
must include a file name extension if the name of the file being mapped has an
extension. The filename argument cannot include any wildcard characters
(e.g., * or ?), and is not case sensitive.

Note Unlike the other memmapfile constructor arguments, you must specify
filename as a single string, and not as a parameter-value pair.

If the file to be mapped resides somewhere on the MATLAB path, you can use
a partial pathname. If the path to the file is not fully specified, MATLAB
searches for the file in your current working directory first, and then on the
MATLAB path.

Once memmapfile locates the file, MATLAB stores the absolute path name for
the file internally, and then uses this stored path to locate the file from that

6-89

file:///B:/matlab/doc/src/toolbox/matlab/ref/partialpath.html

6 Data Import and Export

point on. This enables you to work in other directories outside your current
work directory and retain access to the mapped file.

You can change the value of the Filename property at any time after
constructing the memmapfile object. You might want to do this if:

• You want to use the same memmapfile object on more than one file.

• You save your memmapfile object to a MAT-file, and then later load it back
into MATLAB in an environment where the mapped file has been moved to
a different location. This requires that you modify the path segment of the
Filename string to represent the new location.

For example, save memmapfile object m to file mymap.mat:

disp(m.Filename)
d:\matlab\mfiles\records.dat

save mymat m

Now move the file to another location, load the object back into MATLAB, and
update the path in the Filename property:

load mymat m
m.Filename = 'f:\testfiles\oct1\records.dat'

Note You can only map an existing file. You cannot create a new file and map
that file to memory in one operation. Use the MATLAB file I/O functions to
create the file before attempting to map it to memory.

Setting the Start of the Mapped Region
By default, MATLAB begins a memory map at the start of the file. To begin
the mapped region at some point beyond the start of the file, specify an Offset
parameter in the call to the memmapfile constructor:

objname = memmapfile(filename, 'Offset', bytecount)

The bytecount value is the number of bytes from the beginning of the file to
the point in the file where you want the memory map to start (a zero-based

6-90

Accessing Files with Memory-Mapping

offset). To map the file records.dat from a point 1024 bytes from the start
and extending to the end of the file, type

m = memmapfile('records.dat', 'Offset', 1024);

You can change the starting position of an existing memory map by setting
the Offset property for the associated object to a new value. The following
command sets the offset of memmapfile object m to be 2,048 bytes from the
start of the mapped file:

m.Offset = 2048;

Note The Sol64 platform supports aligned data access only. If you attempt to
use a memmapfile offset on Sol64 that does not take the necessary alignment
considerations into account, MATLAB generates an error. (See “Aligned
Access on Sol64” on page 6-83).

Identifying the Contents of the Mapped Region
By default, MATLAB considers all the data in a mapped file to be a sequence
of unsigned 8-bit integers. To have the data interpreted otherwise as it is
read or written to in the mapped file, specify a Format parameter and value in
your call to the constructor:

objname = memmapfile(filename, 'Format', formatspec)

The formatspec argument can either be a character string that identifies a
single class used throughout the mapped region, or a cell array that specifies
more than one class.

For example, say that you map a file that is 12 kilobytes in length. Data read
from this file could be treated as a sequence of 6,000 16-bit (2-byte) integers,
or as 1,500 8-byte double-precision floating-point numbers, to name just a
couple of possibilities. Or you could read this data in as a combination of
different types: for example, as 4,000 8-bit (1-byte) integers followed by 1,000
64-bit (8-byte) integers. You determine how MATLAB will interpret the
mapped data by setting the Format property of the memmapfile object when
you call its constructor.

6-91

6 Data Import and Export

MATLAB arrays are stored on disk in column-major order. (The sequence
of array elements is column 1, row 1; column 1, row 2; column 1, last row;
column 2, row 1, and so on.) You might need to transpose or rearrange the
order of array elements when reading or writing via a memory map.

Note The Sol64 platform supports aligned data access only. If you attempt to
use a memmapfile format on Sol64 that does not take the necessary alignment
considerations into account, MATLAB generates an error. (See “Aligned
Access on Sol64” on page 6-83).

For a list of data types supported for the Format property, see “Supported
Data Types for the Format Property” on page 6-97.

For more information on format options see these sections:

• “Mapping a Single Data Type” on page 6-92

• “Formatting the Mapped Data to an Array” on page 6-93

• “Mapping Multiple Data Types and Arrays” on page 6-94

Mapping a Single Data Type. If the file region being mapped contains data
of only one type, specify the Format value as a character string identifying
that type:

objname = memmapfile(filename, 'Format', datatype)

The following command constructs a memmapfile object for the entire file
records.dat, and sets the Format property for that object to uint64. Any
read or write operations made via the memory map will read and write the
file contents as a sequence of unsigned 64-bit integers:

m = memmapfile('records.dat', 'Format', 'uint64')
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 0
Format: 'uint64'
Repeat: Inf

Data: 5000x1 uint64 array

6-92

Accessing Files with Memory-Mapping

You can change the value of the Format property at any time after the
memmapfile object is constructed. Use the object.property syntax shown
here in assigning the new value:

m.Format = 'int32';

Further read and write operations to the region mapped by m now treat the
data in the file as a sequence of signed 32-bit integers.

Property names, like Format, are not case sensitive.

Formatting the Mapped Data to an Array. You can also specify an array
shape to be applied to the data read or written to the mapped file, and a field
name to be used in referencing this array. Use a cell array to hold these values
either when calling the memmapfile constructor or when modifying m.Format
after the object has been constructed. The cell array contains three elements:
the class to be applied to the mapped region, the dimensions of the array shape
that is applied to the region, and a field name to use in referencing the data:

objname = memmapfile(filename, ...
'Format', {datatype, dimensions, varname})

The following command constructs a memmapfile object for a region of
records.dat such that MATLAB handles the contents of the region as a
4-by-10-by-18 array of unsigned 32-bit integers, which you can reference in
the structure of the returned object using the field name x:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', {'uint32' [4 10 18] 'x'})

m =
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 1024
Format: {'uint32' [4 10 18] 'x'}
Repeat: Inf

Data: 13x1 struct array with fields:
x

A = m.Data(1).x;

6-93

6 Data Import and Export

whos A
Name Size Bytes Class

A 4x10x18 2880 uint32 array

Grand total is 720 elements using 2880 bytes

You can change the class, array shape, or field name that MATLAB applies
to the mapped region at any time by setting a new value for the Format
property of the object:

m.Format = {'uint64' [30 4 10] 'x'};
A = m.Data(1).x;

whos A
Name Size Bytes Class

A 30x4x10 9600 uint64 array

Grand total is 1200 elements using 9600 bytes

Mapping Multiple Data Types and Arrays. If the region being mapped
is composed of segments of varying classes or array shapes, you can specify
an individual format for each segment using an N-by-3 cell array, where N is
the number of segments. The cells of each cell array row identify the class
for that segment, the array dimensions to map the data to, and a field name
by which to reference that segment:

objname = memmapfile(filename, ...
'Format', { ...

datatype1, dimensions1, fieldname1; ...
datatype2, dimensions2, fieldname2; ...

: : : ...
datatypeN, dimensionsN, fieldnameN})

The following command maps a 24-kilobyte file containing data of three
different classes: int16, uint32, and single. The int16 data is mapped
as a 2-by-2 matrix that can be accessed using the field name model. The
uint32 data is a scalar value accessed as field serialno. The single data
is a 1-by-3 matrix named expenses.

6-94

Accessing Files with Memory-Mapping

Each of these fields belongs to the 800-by-1 structure array m.Data:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

6-95

6 Data Import and Export

Mapping of the Example File

The figure below shows the ordering of the array elements more closely.
In particular, it illustrates that MATLAB arrays are stored on the disk in
column-major order. The sequence of array elements in the mapped file is row
1, column 1; row 2, column 1; row 1, column 2; and row 2, column 2.

6-96

Accessing Files with Memory-Mapping

If the data in your file is not stored in this order, you might need to transpose
or rearrange the order of array elements when reading or writing via a
memory map.

Supported Data Types for the Format Property. You can use any of the
following classes when you specify a Format value. The default type is uint8.

Format String Data Type Description

'int8' Signed 8-bit integers
'int16' Signed 16-bit integers
'int32' Signed 32-bit integers
'int64' Signed 64-bit integers
'uint8' Unsigned 8-bit integers
'uint16' Unsigned 16-bit integers
'uint32' Unsigned 32-bit integers
'uint64' Unsigned 64-bit integers
'single' 32-bit floating-point
'double' 64-bit floating-point

6-97

6 Data Import and Export

Repeating a Format Scheme
After you set a Format value for the memmapfile object, you can have
MATLAB apply that format to the file data multiple times by specifying a
Repeat value when you call the memmapfile constructor:

objname = memmapfile(filename, ...
'Format', formatspec, ...
'Repeat', count)

The Repeat value applies to the whole format specifier, whether that specifier
describes just a single class that repeats, or a more complex format that
includes various classes and array shapes. The default Repeat value is
infinity (inf), which means that the full extent of the Format specifier repeats
as many times as possible within the mapped region.

The next example maps a file region identical to that of the previous example,
except the pattern of int16, uint32, and single classes is repeated only
three times within the mapped region of the file:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 3);

You can change the value of the Repeat property at any time. To change
the repeat value to 5, type

m.Repeat = 5;

Property names, like Repeat, are not case sensitive.

Keeping the Repeated Format Within the Mapped Region. MATLAB
maps only the full pattern specified by the Format property. If you repeat a
format such that it would cause the map to extend beyond the end of the file,
then either of two things can happen:

• If you specify a repeat value of Inf, MATLAB applies to the map only those
repeated segments that fit within the file in their entirety.

6-98

Accessing Files with Memory-Mapping

• If you specify a repeat value other than Inf, and that value would cause
the map to extend beyond the end of the file, MATLAB generates an error.

Considering the last example, if the part of the file from m.Offset to the end
were 70 bytes (instead of the 72 bytes required to repeat m.Format three
times) and you used a Repeat value of Inf, then only two full repetitions of
the specified format would have been mapped. The end result is as if you had
constructed the map with this command:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 2);

If Repeat were set to 3 and you had only 70 bytes to the end of the file, you
would get an error.

Note memmapfile does not expand or append to a mapped file. Use standard
file I/O functions like fopen and fwrite to do this.

Setting the Type of Access
You can map a file region to allow either read-only or read and write access
to its contents. Pass a Writable parameter and value in the memmapfile
constructor, or set m.Writable on an existing object to set the type of access
allowed:

objname = memmapfile(filename, 'Writable', trueorfalse)

The value passed can be either true (equal to logical(1)) or false (equal
to logical(0)). By default, it is false, meaning that the mapped region
is read only.

To map a read and write region of the file records.dat in memory, type

m = memmapfile('records.dat', 'Writable', true);

6-99

6 Data Import and Export

Note To successfully modify the file you are mapping to, you must have write
permission for that file. If you do not have write permission, you can still set
the Writable property to true, but attempting to write to the file generates
an error.

You can change the value of the Writable property at any time. To make the
memory map to records.dat read only, type:

m.Writable = false;

Property names, like Writable, are not case sensitive.

Reading a Mapped File
The most commonly used property of the memmapfile class is the Data
property. It is through this property of the memory-map object that MATLAB
provides all read and write access to the contents of the mapped file.

The actual mapping of a file to the MATLAB address space does not take
place when you construct a memmapfile object. A memory map, based on the
information currently stored in the mapped object, is generated the first time
you reference or modify the Data property for that object.

After you map a file to memory, you can read the contents of that file using
the same MATLAB statements used to read variables from the MATLAB
workspace. By accessing the Data property of the memory map object, the
contents of the mapped file appear as if they were an array in the currently
active workspace. You simply index into this array to read the desired data
from the file.

This section covers the following topics:

• “Improving Performance” on page 6-101

• “Example 1 — Reading a Single Data Type” on page 6-101

• “Example 2 — Formatting File Data as a Matrix” on page 6-102

• “Example 3 — Reading Multiple Data Types” on page 6-103

6-100

Accessing Files with Memory-Mapping

• “Example 4 — Modifying Map Parameters” on page 6-104

Improving Performance
MATLAB accesses data in structures more efficiently than it does data
contained in objects. The main reason is that structures do not require the
extra overhead of a subsref routine. Instead of reading directly from the
memmapfile object, as shown here:

for k = 1 : N
y(k) = m.Data(k);

end

you will get better performance when you assign the Data field to a variable,
and then read or write the mapped file through this variable, as shown in
this second example:

dataRef = m.Data;
for k = 1 : N

y(k) = dataRef(k);
end

Example 1 — Reading a Single Data Type
This example maps a file of 100 double-precision floating-point numbers to
memory. The map begins 1024 bytes from the start of the file, and ends 800
bytes (8 bytes per double times a Repeat value of 100) from that point.

If you haven’t done so already, generate a test data file for use in the following
examples by executing the gendatafile function defined under “Constructing
a memmapfile Object” on page 6-86:

gendatafile('records.dat', 5000);

Now, construct the memmapfile object m, and show the format of its Data
property:

m = memmapfile('records.dat', 'Format', 'double', ...
'Offset', 1024, 'Repeat', 100);

6-101

6 Data Import and Export

d = m.Data;

whos d
Name Size Bytes Class

d 100x1 800 double array

Grand total is 100 elements using 800 bytes

Read a selected set of numbers from the file by indexing into the
single-precision array m.Data:

d(15:20)
ans =

1.0e+009 *
3.6045
2.7006
0.5745
0.8896
2.6079
2.7053

Example 2 — Formatting File Data as a Matrix
This example is similar to the last, except that the constructor of the
memmapfile object now specifies an array shape of 4-by-6 to be applied to the
data as it is read from the mapped file. MATLAB maps the file contents into a
structure array rather than a numeric array, as in the previous example:

m = memmapfile('records.dat', ...
'Format', {'double', [4 6], 'x'}, ...
'Offset', 1024, 'Repeat', 100);

d = m.Data;

whos d
Name Size Bytes Class

d 100x1 25264 struct array

Grand total is 2500 elements using 25264 bytes

6-102

Accessing Files with Memory-Mapping

When you read an element of the structure array, MATLAB presents the
data in the form of a 4-by-6 array:

d(5).x
ans =

1.0e+009 *
3.1564 0.6684 2.1056 1.9357 1.2773 4.2219
2.9520 0.8208 3.5044 1.7705 0.2112 2.3737
1.4865 1.8144 1.9790 3.8724 2.9772 1.7183
0.7131 3.6764 1.9643 0.0240 2.7922 0.8538

To index into the structure array field, use:

d(5).x(3,2:6)
ans =

1.0e+009 *
1.8144 1.9790 3.8724 2.9772 1.7183

Example 3 — Reading Multiple Data Types
This example maps a file containing more than one class. The different
classes contained in the file are mapped as fields of the returned structure
array m.Data.

The Format parameter passed in the constructor specifies that the first 80
bytes of the file are to be treated as a 5-by-8 matrix of uint16, and the 160
bytes after that as a 4-by-5 matrix of double. This pattern repeats until the
end of the file is reached. The example shows different ways of reading the
Data property of the object.

Start by calling the memmapfile constructor to create a memory map object, m:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

If you examine the Data property, MATLAB shows a 166-element structure
array with two fields, one for each format specifier in the constructor:

d = m.Data

6-103

6 Data Import and Export

ans =
166x1 struct array with fields:

x
y

Examine one structure in the array to show the format of each field:

d(3)
ans =

x: [5x8 uint16]
y: [4x5 double]

Now read the x and y fields of that structure from the file. MATLAB formats
the first block of data as a 5-by-8 matrix of uint16, as specified in the Format
property, and the second block as a 4-by-5 matrix of double:

d(3).x
ans =

34432 47500 19145 16868 38165 47956 35550 16853
60654 51944 16874 47166 35397 58072 16850 56576
51075 16876 12471 34369 8341 16853 44509 57652
16863 16453 6666 11480 16869 58695 36217 5932
57883 15551 41755 16874 37774 31693 54813 16865

d(3).y
ans =

1.0e+009 *
3.1229 1.5909 2.9831 2.2445 1.1659
1.3284 3.0182 2.6685 3.7802 1.0837
3.6013 2.3475 3.4137 0.7428 3.7613
2.4399 1.9107 4.1096 4.2080 3.1667

Example 4 — Modifying Map Parameters
This example plots the Fourier transform output of data read from a file via a
memory map. It then modifies several parameters of the existing map, reads
from a different part of the data file, and plots a histogram from that data.

Create a memory-mapped object, mapping 1,000 elements of type double
starting at the 1025th byte:

6-104

Accessing Files with Memory-Mapping

m = memmapfile('mybinary.bin', 'Offset', 1024, ...
'Format', 'double', 'Repeat', 1000);

Get data associated with the map and plot the FFT of the first 1000 values of
the map. This is when the map is actually created, because no data has been
referenced until this point:

plot(abs(fft(m.Data(1:1000))));

Get information about the memory map:

mapStruct = get(m)

mapStruct =
Filename: 'd:\matlab\mfiles\mybinary.bin'
Writable: 0

Offset: 1024
Format: 'double'
Repeat: 1000

Data: [1000x1 double]

Change the map, but continue using the same file:

m.Offset = 4096;
m.Format = 'single';
m.Repeat = 800;

Read from a different area of the file, and plot a histogram of the data. This
maps a new region and unmaps the previous region:

hist(m.Data)

Writing to a Mapped File
Writing to a mapped file is done with standard MATLAB subscripted
assignment commands. To write to a particular location in the file mapped
to memmapfile object m, assign the value to the m.Data structure array index
and field that map to that location.

6-105

6 Data Import and Export

If you haven’t done so already, generate a test data file for use in the following
examples by executing the gendatafile function defined under “Constructing
a memmapfile Object” on page 6-86:

gendatafile('records.dat', 5000);

Now call the memmapfile constructor to create the object:

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

If you are going to modify the mapped file, be sure that you have write
permission, and that you set the Writable property of the memmapfile object
to true (logical 1):

m.Writable = true;

Note You do not have to set Writable as a separate command, as done
here. You can include a Writable parameter-value argument in the call to
the memmapfile constructor.

Read from the 5-by-8 matrix x at m.Data(2):

d = m.Data;

d(2).x
ans =

35330 4902 31861 16877 23791 61500 52748 16841
51314 58795 16860 43523 8957 5182 16864 60110
18415 16871 59373 61001 52007 16875 26374 28570
16783 4356 52847 53977 16858 38427 16067 33318
65372 48883 53612 16861 18882 39824 61529 16869

Update all values in that matrix using a standard MATLAB assignment
statement:

d(2).x = d(2).x * 1.5;

6-106

Accessing Files with Memory-Mapping

Verify the results:

d(2).x
ans =

52995 7353 47792 25316 35687 65535 65535 25262
65535 65535 25290 65285 13436 7773 25296 65535
27623 25307 65535 65535 65535 25313 39561 42855
25175 6534 65535 65535 25287 57641 24101 49977
65535 65535 65535 25292 28323 59736 65535 25304

This section covers the following topics:

• “Dimensions of the Data Field” on page 6-107

• “Writing Matrices to a Mapped File” on page 6-108

• “Selecting Appropriate Data Types” on page 6-111

• “Working with Copies of the Mapped Data” on page 6-111

• “Invalid Syntax for Writing to Mapped Memory” on page 6-112

Dimensions of the Data Field
The dimensions of a memmapfile object’s Data field are set at the time you
construct the object and cannot be changed. This differs from other MATLAB
arrays that have dimensions you can modify using subscripted assignment.

For example, you can add a new column to the field of a MATLAB structure:

A.s = ones(4,5);

A.s(:,6) = [1 2 3 4]; % Add new column to A.s
size(A.s)
ans =

4 6

But you cannot add a new column to a similar field of a structure
that represents data mapped from a file. The following assignment to
m.Data(60).y does not expand the size of y, but instead generates an error:

m.Data(60)
ans =

6-107

6 Data Import and Export

x: [5x8 uint16]
y: [4x5 double]

m.Data(60).y(:,6) = [1 2 3 4]; % Generates an error.

Thus, if you map an entire file and then append to that file after constructing
the map, the appended data is not included in the mapped region. If you need
to modify the dimensions of data that you have mapped to a memmapfile
object, you must either modify the Format or Repeat properties for the object,
or reconstruct the object.

Examples. Two examples of statements that attempt to modify the
dimensions of a mapped Data field are shown here. These statements result
in an error.

The first example attempts to diminish the size of the array by removing a
row from the mapped array m.Data.

m.Data(5) = [];

The second example attempts to expand the size of a 50-row mapped array x
by adding another row to it:

m.Data(2).x(1:51,31) = 1:51;

Writing Matrices to a Mapped File
The syntax to use when writing to mapped memory can depend on what
format was used when you mapped memory to the file.

When Memory Is Mapped in Nonstructure Format. When you map a
file as a sequence of a single class (e.g., a sequence of uint16), you can use
the following syntax to write matrix X to the file:

m.Data = X;

This statement is valid only if all of the following conditions are true:

• The file is mapped as a sequence of elements of the same class, making
m.Data an array of a nonstructure type.

• The class of X is the same as the class of m.Data.

6-108

Accessing Files with Memory-Mapping

• The number of elements in X equals the number of elements in m.Data.

This example maps a file as a sequence of 16-bit unsigned integers, and then
uses the syntax shown above to write a matrix to the file. Map only a small
part of the file, using a uint16 format for this segment:

m = memmapfile('records.dat', 'Writable', true', ...
'Offset', 2000, 'Format', 'uint16', 'Repeat', 15);

Create a matrix X of the same size and write it to the mapped part of the file:

X = uint16(5:5:75); % Sequence of 5 to 75, counting by fives.
m.data = X;

Verify that new values were written to the file:

m.offset = 1980; m.repeat = 35;
reshape(m.data,5,7)'
ans =

29158 16841 32915 37696 421 % <== At offset 1980
16868 51434 17455 30645 16871

5 10 15 20 25 % <== At offset 2000
30 35 40 45 50
55 60 65 70 75

16872 50155 51100 26469 16873
56776 6257 28746 16877 34374

When Memory Is Mapped in Scalar Structure Format. When you map a
file as a sequence of a single class (e.g., a sequence of uint16), you can use
the following syntax to write matrix X to the file:

m.Data.f = X;

This statement is valid only if all of the following conditions are true:

• The file is mapped as containing multiple classes that do not repeat,
making m.Data a scalar structure.

• The class of X is the same as the class of m.Data.f.

• The number of elements in X equals that of m.Data.f.

6-109

6 Data Import and Export

This example maps a file as a 300-by-8 matrix of type uint16 followed by
a 200-by-5 matrix of type double, and then uses the syntax shown above
to write a matrix to the file.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [300 8] 'x'; ...
'double' [200 5] 'y' }, ...

'Repeat', 1, 'Writable', true);

m.Data.x = ones(300, 8, 'uint16');

When Memory Is Mapped in Nonscalar Structure Format. When
you map a file as a repeating sequence of multiple classes, you can use the
following syntax to write matrix X to the file, providing that k is a scalar index:

m.Data(k).field = X;

To do this, the following conditions must be true:

• The file is mapped as containing multiple classes that can repeat, making
m.Data a nonscalar structure.

• k is a scalar index.

• The class of X is the same as the class of m.Data(k).field.

• The number of elements in X equals that of m.Data(k).field.

This example maps a file as a matrix of type uint16 followed by a matrix of
type double that repeat 20 times, and then uses the syntax shown above
to write a matrix to the file.

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [25 8] 'x'; ...
'double' [15 5] 'y' }, ...

'Repeat', 20, 'Writable', true);

d = m.Data;

d(12).x = ones(25,8,'uint16');

6-110

Accessing Files with Memory-Mapping

You can write to specific elements of field x as shown here:

d(12).x(3:5,1:end) = uint16(500);
d(12).x(3:5,1:end)
ans =

500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500
500 500 500 500 500 500 500 500

Selecting Appropriate Data Types
All of the usual MATLAB indexing and class rules apply when assigning
values to data via a memory map. The class that you assign to must be big
enough to hold the value being assigned. For example,

m = memmapfile('records.dat', 'Format', 'uint8', ...
'Writable', true);

d = m.Data;
d(5) = 300;

saturates the x variable because x is defined as an 8-bit integer:

d(5)
ans =

255

Working with Copies of the Mapped Data
In the following code, the data in variable block2 is a copy of the file data
mapped by m.Data(2). Because it is a copy, modifying array data in block2
does not modify the data contained in the file:

First, destroy the memmapfile object and restore the test file records.dat,
since you modified it by running the previous examples:

clear m
gendatafile('records.dat',50000);

Map the file as a series of uint16 and double matrices and make a copy of
m.Data(2) in block2:

6-111

6 Data Import and Export

m = memmapfile('records.dat', ...
'Format', { ...

'uint16' [5 8] 'x'; ...
'double' [4 5] 'y' });

d = m.Data;

Write all zeros to the copy:

d(2).x(1:5,1:8) = 0;

d(2).x
ans =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Verify that the data in the mapped file is not changed even though the copy of
m.Data(2).x is written with zeros:

m.Data(2).x
ans =

35330 4902 31861 16877 23791 61500 52748 16841
51314 58795 16860 43523 8957 5182 16864 60110
18415 16871 59373 61001 52007 16875 26374 28570
16783 4356 52847 53977 16858 38427 16067 33318
65372 48883 53612 16861 18882 39824 61529 16869

Invalid Syntax for Writing to Mapped Memory
Although you can expand the dimensions of a typical MATLAB array by
assigning outside its current dimensions, this does not apply to the Data
property of a memmapfile object. The following operation is invalid if m.Data
has only 100 elements:

m.Data(120) = x;

6-112

Accessing Files with Memory-Mapping

If you need to expand the size of the mapped data region, first extend the map
by updating the Format or Repeat property of the memmapfile object to reflect
the new structure of the data in the mapped file.

Methods of the memmapfile Class
You can use the following methods on objects constructed from the
memmapfile class.

Syntax Description

disp Displays properties of the object. The display does
not include the object’s name.

get(obj) Returns the values of all properties of the
memmapfile object in a structure array.

get(obj, property) Returns the value of the specified property.
property can be a string or cell array of strings,
each containing a property name.

Using the disp Method
Use the disp method to display all properties of a memmapfile object. The
text displayed includes only the property value, and not the object name or
the MATLAB response string, ans =.

Construct object m:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

and display all of its properties:

disp(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 2048

6-113

6 Data Import and Export

Format: {'int16' [2 2] 'model'
'uint32' [1 1] 'serialno'
'single' [1 3] 'expenses'}

Repeat: Inf
Data: 16581x1 struct array with fields:

model
serialno
expenses

Using the get Method
You can use the get method of the memmapfile class to return information on
any or all of the object’s properties. Specify one or more property names to
get the values of specific properties.

This example returns the values of the Offset, Repeat, and Format properties
for a memmapfile object. Use the get method to return the specified property
values in a 1-by-3 cell array, m_props:

m_props = get(m, {'Offset', 'Repeat', 'Format'})
m_props =

[2048] [Inf] {3x3 cell}

m_props{3}
ans =

'int16' [1x2 double] 'model'
'uint32' [1x2 double] 'serialno'
'single' [1x2 double] 'expenses'

You also can choose to use the objname.property syntax:

m_props = {m.Offset, m.Repeat, m.Format}
m_props =

[2048] [Inf] {3x3 cell}

To return the values for all properties with get, pass just the object name:

get(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: 0

Offset: 2048

6-114

Accessing Files with Memory-Mapping

Format: {3x3 cell}
Repeat: Inf

Data: [16581x1 struct]

Deleting a Memory Map
It is not necessary to explicitly call a destructor method to clear a memmapfile
object from memory when you no longer need it. MATLAB calls the destructor
for you whenever you do any of the following:

• Reassign another value to the memmapfile object’s variable

• Clear the object’s variable from memory

• Exit the function scope in which the object was created

The Effect of Shared Data Copies On Performance
When you assign the Data field of the memmapfile object to a variable,
MATLAB makes a shared data copy of the mapped data. This is very efficient
as no memory actually gets copied. In the following statement, memdat is a
shared data copy of the data mapped from the file:

memdat = m.Data;

When you finish using the mapped data, make sure to clear any variables
that shared data with the mapped file before clearing the object itself. If you
clear the object first, then the sharing of data between the file and dependent
variables is broken, and the data assigned to such variables must be copied
into memory before the object is destroyed. If access to the mapped file was
over a network, then copying this data to local memory can take considerable
time. So, if the statement shown above assigns data to the variable memdat,
you should be sure to clear memdat before clearing m when you are finished
with the object.

Note Keep in mind that the memmapfile object can be cleared in any of the
three ways described under “Deleting a Memory Map” on page 6-115.

6-115

6 Data Import and Export

Memory-Mapping Demo
In this demonstration, two separate MATLAB processes communicate with
each other by writing and reading from a shared file. They share the file by
mapping part of their memory space to a common location in the file. A write
operation to the memory map belonging to the first process can be read from
the map belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its
memory map. It also writes the length of the message to byte 1 in the file,
which serves as a means of notifying the other process that a message is
available. The second process (running answer.m) monitors byte 1 and, upon
seeing it set, displays the received message, puts it into uppercase, and echoes
the message back to the sender.

The send Function
This function prompts you to enter a string and then, using memory-mapping,
passes the string to another instance of MATLAB that is running the answer
function.

Copy the send and answer functions to files send.m and answer.m in your
current working directory. Begin the demonstration by calling send with no
inputs. Next, start a second MATLAB session on the same machine, and call
the answer function in this session. To exit, press Enter.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:send:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

6-116

Accessing Files with Memory-Mapping

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Set first byte to zero, indicating a message is not
% yet ready.
m.Data(1) = 0;

str = input('Enter send string (or RETURN to end): ', 's');

len = length(str);
if (len == 0)

disp('Terminating SEND function.')
break;

end

str = str(1:min(len, 255)); % Message limited to 255 chars.

% Update the file via the memory map.
m.Data(2:len+1) = str;
m.Data(1)=len;

% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1) ~= 0)

pause(.25);
end

% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:len+1))')

end

The answer Function
The answer function starts a server that, using memory-mapping, watches
for a message from send. When the message is received, answer replaces the

6-117

6 Data Import and Export

message with an uppercase version of it, and sends this new message back
to send.

To use answer, call it with no inputs:

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');

filename = fullfile(tempdir, 'talk_answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')

[f, msg] = fopen(filename, 'wb');
if f ~= -1

fwrite(f, zeros(1,256), 'uint8');
fclose(f);

else
error('MATLAB:demo:answer:cannotOpenFile', ...

'Cannot open file "%s": %s.', filename, msg);
end

end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Wait till first byte is not zero.
while m.Data(1) == 0

pause(.25);
end

% The first byte now contains the length of the message.
% Get it from m.
msg = char(m.Data(2:1+m.Data(1)))';

% Display the message.
disp('Received message from SEND:')
disp(msg)

6-118

Accessing Files with Memory-Mapping

% Transform the message to all uppercase.
m.Data(2:1+m.Data(1)) = upper(msg);

% Signal to SEND that the response is ready.
m.Data(1) = 0;

end

Running the Demo
To see what the demonstration looks like when it is run, first, start two
separate MATLAB sessions on the same computer system. Call the send
function in one and the answer function in the other to create a map in each of
the processes’ memory to the common file:

% Run SEND in the first MATLAB session.
send
Enter send string (or RETURN to end):

% Run ANSWER in the second MATLAB session.
answer
ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB
writes the message to the shared file. The second MATLAB session, running
the answer function, loops on byte 1 of the shared file and, when the byte is
written by send, answer reads the message from the file via its memory map.
The answer function then puts the message into uppercase and writes it back
to the file, and send (waiting for a reply) reads the message and displays it:

% SEND writes a message and reads the uppercase reply.
Hello. Is there anybody out there?
response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter send string (or RETURN to end):

% ANSWER reads the message from SEND.
Received message from SEND:
Hello. Is there anybody out there?

6-119

6 Data Import and Export

send writes a second message to the file. answer reads it, put it into
uppercase, and then writes the message to the file:

% SEND writes a second message to the shared file.
I received your reply.
response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter send string (or RETURN to end): <Enter>
Terminating SEND function.

% ANSWER reads the second message.
Received message from SEND:
I received your reply.

6-120

Exchanging Files over the Internet

Exchanging Files over the Internet

In this section...

“Overview” on page 6-121
“Downloading Web Content and Files” on page 6-121
“Creating and Decompressing Zip Archives” on page 6-123
“Sending E-Mail” on page 6-124
“Performing FTP File Operations” on page 6-126

Overview
MATLAB software provides functions for exchanging files over the Internet.
You can exchange files using common protocols, such as File Transfer Protocol
(FTP), Simple Mail Transport Protocol (SMTP), and HyperText Transfer
Protocol (HTTP). In addition, you can create zip archives to minimize the
transmitted file size, and also save and work with Web pages.

Downloading Web Content and Files
MATLAB provides two functions for downloading Web pages and files using
HTTP: urlread and urlwrite. With the urlread function, you can read
and save the contents of a Web page to a string variable in the MATLAB
workspace. With the urlwrite function, you can save a Web page’s content
to a file.

Because it creates a string variable in the workspace, the urlread function is
useful for working with the contents of Web pages in MATLAB. The urlwrite
function is useful for saving Web pages to a local directory.

Note When using urlread, remember that only the HTML in that specific
Web page is retrieved. The hyperlink targets, images, and so on are not
retrieved.

6-121

6 Data Import and Export

If you need to pass parameters to a Web page, the urlread and urlwrite
functions let you use HTTP post and get methods. For more information, see
the urlread and urlwrite reference pages.

Example — Using the urlread Function
The following procedure demonstrates how to retrieve the contents of the Web
page containing the Recent File list at the MATLAB Central File Exchange,
http://www.mathworks.com/matlabcentral/fileexchange/. It assigns the
results to a string variable, recentFile, and it uses the strfind function to
search the retrieved content for a specific word:

1 Retrieve the Web page content with the urlread function:

recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

2 After retrieving the content, run the strfind function on the recentFile
variable:

hits = strfind(recentFile,'Simulink');

If the file contains the word Simulink, MATLAB stores the matches in
the hits variable.

While you can manually pass arguments using the URL, the urlread
function also lets you pass parameters to a Web page using standard HTTP
methods, including post and form. Using the HTTP get method, which
passes parameters in the URL, the following code queries Google for the
word Simulink:

s =
urlread('http://www.google.com/search','get',{'q','Simulink'})

For more information, see the urlread reference page.

Example — Using the urlwrite Function
The following example builds on the procedure in the previous section. This
example still uses urlread and checks for a specific word, but it also uses
urlwrite to save the file if it contains any matches:

6-122

http://www.mathworks.com/matlabcentral/fileexchange/

Exchanging Files over the Internet

% The urlread function loads the contents of the Web page into
the % MATLAB workspace.

recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

% The strfind function searches for the word "Simulink".
hits = strfind(recentFile,'Simulink');

% The if statement checks for any hits.
if ~isempty(hits)

% If there are hits, the Web page will be saved locally
% using the urlwrite function.

urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0',
'contains_simulink.html');
end;

MATLAB saves the Web page as contains_simulink.html.

Creating and Decompressing Zip Archives
Using the zip and unzip functions, you can compress and decompress files
and directories. The zip function compresses files or directories into a zip
archive. The unzip function decompresses zip archives.

Example — Using the zip Function
Again building on the example from previous sections, the following code
creates a zip archive of the retrieved Web page:

% The urlread function loads the contents of the Web page into
the % MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

% The strfind function searches for the word "Simulink".

6-123

6 Data Import and Export

hits = strfind(recentFile,'Simulink');

% The if statement checks for any hits.
if ~isempty(hits)

% If there are hits, the Web page will be saved locally
% using the urlwrite function.
urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0',
'contains_simulink.html');

% The zip function creates a zip archive of the retrieved Web
page.
zip('simulink_matches.zip','contains_simulink.html');
end;

Sending E-Mail
To send an e-mail from MATLAB, use the sendmail function. You can also
attach files to an e-mail, which lets you mail files directly from MATLAB. To
use sendmail, you must first set up your e-mail address and your SMTP
server information with the setpref function.

The setpref function defines two mail-related preferences:

• E-mail address: This preference sets your e-mail address that will appear
on the message. Here is an example of the syntax:

setpref('Internet','E_mail','youraddress@yourserver.com');

• SMTP server: This preference sets your outgoing SMTP server address,
which can be almost any e-mail server that supports the Post Office
Protocol (POP) or the Internet Message Access Protocol (IMAP). Here is
an example of the syntax:

setpref('Internet', 'SMTP_Server', 'mail.server.network');

You should be able to find your outgoing SMTP server address in your e-mail
account settings in your e-mail client application. You can also contact your
system administrator for the information.

6-124

Exchanging Files over the Internet

Note The sendmail function does not support e-mail servers that require
authentication.

Once you have properly configured MATLAB, you can use the sendmail
function. The sendmail function requires at least two arguments: the
recipient’s e-mail address and the e-mail subject:

sendmail('recipient@someserver.com', 'Hello From MATLAB!');

You can supply multiple e-mail addresses using a cell array of strings, such as:

sendmail({'recipient@someserver.com', ...
'recipient2@someserver.com'}, 'Hello From MATLAB!');

You can also specify a message body with the sendmail function, such as:

sendmail('recipient@someserver.com', 'Hello From MATLAB!', ...
'Thanks for using sendmail.');

In addition, you can also attach files to an e-mail using the sendmail function,
such as:

sendmail('recipient@someserver.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', 'C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message
can be empty. You can also attach multiple files to an e-mail with the
sendmail function, such as:

sendmail('recipient@someserver.com', 'Hello from MATLAB!', ...
'Thanks for using sendmail.', ...
{'C:\yourFileSystem\message.txt',...
'C:\yourFileSystem\message2.txt'});

Example — Using the sendmail Function
The following example sends e-mail with the retrieved Web page archive
attached if it contains any matches for the specified word:

6-125

6 Data Import and Export

% The urlread function loads the contents of the Web page into
the % MATLAB workspace.
recentFile =
urlread('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0');

% The strfind function searches for the word "Simulink".
hits = strfind(recentFile,'Simulink');

% The if statement checks for any hits.
if ~isempty(hits)

% If there are hits, the Web page will be saved locally
% using the urlwrite function.
urlwrite('http://www.mathworks.com/matlabcentral/fileexchange/
loadFileList.do?objectType=fileexchange&orderBy=date&srt3=0',
'contains_simulink.html');

% The zip function creates a zip archive of the retrieved web
page.
zip('simulink_matches.zip','contains_simulink.html');

% The setpref function supplies your e-mail address and SMTP
% server address to MATLAB.
setpref('Internet','SMTP_Server','mail.server.network');
setpref('Internet', 'E_mail', 'youraddress@yourserver.com');

% The sendmail function sends an e-mail with the zip archive of
the
% retrieved Web page attached.
sendmail('youraddress@yourserver.com', 'New Simulink Files
Found', 'New Simulink files uploaded to MATLAB Central. See
attached zip archive.', 'simulink_matches.zip');
end;

Performing FTP File Operations
From MATLAB, you can connect to an FTP server to perform remote file
operations. The following procedure uses a public MathWorks FTP server

6-126

Exchanging Files over the Internet

(ftp.mathworks.com). To perform any file operation on an FTP server, follow
these steps:

1 Connect to the server using the ftp function.

For example, you can create an FTP object for the public MathWorks FTP
server with tmw=ftp('ftp.mathworks.com').

2 Perform the file operations using appropriate MATLAB FTP functions as
methods acting on the server object.

For example, you can display the file directories on the FTP server with
dir(tmw).

3 When you finish working on the server, close the connection object using
the close function.

For example, you can disconnect from the FTP server with close(tmw).

Example — Retrieving a File from an FTP Server
In this example, you retrieve the file pub/pentium/Moler_1.txt, which is on
the MathWorks FTP server. You can run this example; the FTP server and
content are valid.

1 Connect to the MathWorks FTP server using ftp. This creates the server
object tmw:

tmw=ftp('ftp.mathworks.com');

2 List the contents of the server using the FTP dir function, which operates
on the server object tmw:

dir(tmw)

3 Change to the pub directory by using the FTP cd function. As with all FTP
functions, you need to specify the server object you created using tmw as
part of the syntax. In this case, this is tmw:

cd(tmw,'pub');

6-127

6 Data Import and Export

The server object tmw represents the current directory on the FTP server,
which now is pub.

4 Now when you run:

dir(tmw)

you see the contents of pub, rather than the top level contents as displayed
previously when you ran dir(tmw).

5 Use mget to retrieve any of the files from the current directory on the FTP
server to the MATLAB current directory:

mget(tmw,'filename');

6 Close the FTP connection using close.

close(tmw);

Summary of FTP Functions
The following table lists the available FTP functions. For more information,
refer to the applicable reference pages.

Function Description

ascii Set FTP transfer type to ASCII (convert new lines).
binary Set FTP transfer type to binary (transfer verbatim,

default).
cd (ftp) Change current directory on FTP server.
delete (ftp) Delete file on FTP server.
dir (ftp) List contents of directory on FTP server.
close (ftp) Close connection with FTP server.
ftp Connect to FTP server, creating an FTP object.
mget Download file from FTP site.
mkdir (ftp) Create new directory on FTP server.
mput Upload file or directory to FTP server.

6-128

Exchanging Files over the Internet

Function Description

rename Rename file on FTP server.
rmdir (ftp) Remove directory on FTP server.

6-129

6 Data Import and Export

6-130

7

Scientific Data File Formats

This section describes how to import and export data in several standard
scientific data formats. Topics covered include

• “Common Data Format (CDF) Files” on page 7-2

• “Network Common Data Form (netCDF) Files ” on page 7-8

• “Flexible Image Transport System (FITS) Files” on page 7-17

• “Hierarchical Data Format (HDF5) Files” on page 7-20

• “Hierarchical Data Format (HDF4) Files” on page 7-45

7 Scientific Data File Formats

Common Data Format (CDF) Files

In this section...

“Getting Information About CDF Files” on page 7-2
“Importing Data from a CDF File” on page 7-3
“Exporting Data to a CDF File” on page 7-6

Note For information about working with netCDF files, which is a completely
separate, incompatible format, see “Network Common Data Form (netCDF)
Files ” on page 7-8.

Getting Information About CDF Files
To get information about the contents of a Common Data Format (CDF)
file, use the cdfinfo function. CDF was created by the National Space
Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). The cdfinfo function returns a structure containing general
information about the file and detailed information about the variables and
attributes in the file. For more information about this format, see the CDF
Web site.

The following example returns information about the sample CDF file
included with MATLAB. To determine the variables contained in the file, view
the Variables field. This field contains a cell array that lists all the variables
in the file with information that describes the variable, such as name, size, and
data type. For an example, see “Importing Data from a CDF File” on page 7-3.

Note Because cdfinfo creates temporary files, make sure that your current
working directory is writable before attempting to use the function.

info = cdfinfo('example.cdf')

7-2

http://cdf.gsfc.nasa.gov/
http://cdf.gsfc.nasa.gov/

Common Data Format (CDF) Files

info =

Filename: 'example.cdf'
FileModDate: '09-Mar-2001 16:45:22'

FileSize: 1240
Format: 'CDF'

FormatVersion: '2.7.0'
FileSettings: [1x1 struct]

Subfiles: {}
Variables: {5x6 cell}

GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

Importing Data from a CDF File
To import data into the MATLAB workspace from a Common Data Format
(CDF) file, use the cdfread function. CDF was created by the National Space
Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). Using this function, you can import all the data in the file,
specific variables, specific records, or subsets of the data in a specific variable.
The following examples illustrate some of these capabilities.

1 To get information about the contents of a CDF file, such as the names of
variables in the CDF file, use the cdfinfo function. In this example, the
Variables field indicates that the file contains five variables. The first
variable, Time, is made up of 24 records containing CDF epoch data. The
next two variables, Longitude and Latitude, have only one associated
record containing int8 data. For details about how to interpret the data
returned in the Variables field, see cdfinfo.

info = cdfinfo('example.cdf');

vars = info.Variables

vars =

Columns 1 through 5

'Time' [1x2 double] [24] 'epoch' 'T/'

7-3

7 Scientific Data File Formats

'Longitude' [1x2 double] [1] 'int8' 'F/FT'

'Latitude' [1x2 double] [1] 'int8' 'F/TF'

'Data' [1x3 double] [1] 'double' 'T/TTT'

'multidimensional [1x4 double] [1] 'uint8' 'T/TTTT'

Column 6

'Full'

'Full'

'Full'

'Full'

'Full'

2 To read all of the data in the CDF file, use the cdfread function. The
function returns the data in a 24-by-5 cell array. The five columns of data
correspond to the five variables; the 24 rows correspond to the 24 records
associated with the Time variable and padding elements for the rows
associated with the other variables. The padding value used is specified
in the CDF file.

data = cdfread('example.cdf');

whos data
Name Size Bytes Class Attributes

data 24x5 14784 cell

3 To read the data associated with a particular variable, use the 'Variable'
parameter, specifying a cell array of variable names as the value of this
parameter. Variable names are case sensitive. For example, the following
code reads the Longitude and Latitude variables from the file. The return
value data is a 24-by-2 cell array, where each cell contains int8 data.

var_time = cdfread('example.cdf','Variable',{'Longitude','Latitude'});

whos var_time

Name Size Bytes Class Attributes

var_time 24x1 4608 cell

7-4

Common Data Format (CDF) Files

Speeding Up Read Operations
The cdfread function offers two ways to speed up read operations when
working with large data sets:

• Reducing the number of elements in the returned cell array

• Returning CDF epoch values as MATLAB serial date numbers rather than
as MATLAB cdfepoch objects

To reduce the number of elements in the returned cell array, specify the
'CombineRecords' parameter. By default, cdfread creates a cell array with
a separate element for every variable and every record in each variable,
padding the records dimension to create a rectangular cell array. For
example, reading all the data from the example file produces an output
cell array, 24-by-5, where the columns represent variables and the rows
represent the records for each variable. When you set the 'CombineRecords'
parameter to true, cdfread creates a separate element for each variable
but saves time by putting all the records associated with a variable in a
single cell array element. Thus, reading the data from the example file with
'CombineRecords' set to true produces a 1-by-5 cell array, as shown below.

data_combined = cdfread('example.cdf','CombineRecords',true);

whos

Name Size Bytes Class Attributes

data 24x5 14784 cell

data_combined 1x5 2364 cell

When combining records, note that the dimensions of the data in the cell
change. For example, if a variable has 20 records, each of which is a scalar
value, the data in the cell array for the combined element contains a 20-by-1
vector of values. If each record is a 3-by-4 array, the cell array element
contains a 20-by-3-by-4 array. For combined data, cdfread adds a dimension
to the data, the first dimension, that is the index into the records.

Another way to speed up read operations is to read CDF epoch values as
MATLAB serial date numbers. By default, cdfread creates a MATLAB
cdfepoch object for each CDF epoch value in the file. If you specify the
'ConvertEpochToDatenum' parameter, setting it to true, cdfread returns

7-5

7 Scientific Data File Formats

CDF epoch values as MATLAB serial date numbers. For more information
about working with MATLAB cdfepoch objects, see “Representing CDF Time
Values” on page 7-6.

data_datenums = cdfread('example.cdf','ConvertEpochToDatenum',true);

whos

Name Size Bytes Class Attributes

data 24x5 14784 cell

data_combined 1x5 2364 cell

var_time 24x1 4608 cell

Representing CDF Time Values
CDF represents time differently than MATLAB. CDF represents date and
time as the number of milliseconds since 1-Jan-0000. This is called an epoch
in CDF terminology. MATLAB represents date and time as a serial date
number, which is the number of days since 0-Jan-0000. To represent CDF
dates, MATLAB uses an object called a CDF epoch object. To access the time
information in a CDF object, use the object’s todatenum method.

For example, this code extracts the date information from a CDF epoch object:

1 Extract the date information from the CDF epoch object returned in the
cell array data (see “Importing Data from a CDF File” on page 7-3). Use
the todatenum method of the CDF epoch object to get the date information,
which is returned as a MATLAB serial date number.

m_date = todatenum(data{1});

2 View the MATLAB serial date number as a string.

datestr(m_date)
ans =

01-Jan-2001

Exporting Data to a CDF File
To export data from the MATLAB workspace to a Common Data Format
(CDF) file, use the cdfwrite function. CDF was created by the National

7-6

Common Data Format (CDF) Files

Space Science Data Center (NSSDC) to provide a self-describing data storage
and manipulation format that matches the structure of scientific data and
applications (i.e., statistical and numerical methods, visualization, and
management). Using this function, you can write variables and attributes
to the file, specifying their names and associated values. See the cdfwrite
reference page for more information.

This example shows how to write date information to a CDF file. Note how
the example uses the CDF epoch object constructor, cdfepoch, to convert a
MATLAB serial date number into a CDF epoch.

cdfwrite('myfile',{'Time_val',cdfepoch(now)});

You can convert a cdfepoch object back into a MATLAB serial date number
with the todatenum function.

7-7

7 Scientific Data File Formats

Network Common Data Form (netCDF) Files

In this section...

“Overview” on page 7-8
“Mapping netCDF API Syntax to MATLAB Function Syntax” on page 7-9
“Example: Exploring the Contents of a netCDF File” on page 7-10
“Example: Reading Data from a netCDF File” on page 7-14
“Example: Storing Data in a netCDF File” on page 7-14

Note For information about working with Common Data Format (CDF) files,
which is a completely separate, incompatible format, see “Common Data
Format (CDF) Files” on page 7-2.

Overview
MATLAB provides access to the routines in the netCDF C library that you can
use to read data from netCDF files and write data to netCDF files. MATLAB
provides this access through a set of MATLAB functions that correspond to
the functions in the netCDF C library. MATLAB groups the functions into a
package, called netcdf. To call one of the functions in the package, you must
specify the package name. For a complete list of all the functions, see netcdf.

Note The MATLAB netCDF functions support netCDF Version 3.6.2.

This section does not attempt to describe all features of the netCDF library or
explain basic netCDF programming concepts. To use the MATLAB netCDF
functions effectively, you should be familiar with the information about
netCDF contained in the NetCDF C Interface Guide for version 3.6.2.. The
following sections provide details about how to use the MATLAB netCDF
functions.

7-8

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_3_6_2/

Network Common Data Form (netCDF) Files

Mapping netCDF API Syntax to MATLAB Function
Syntax
For the most part, the MATLAB netCDF functions correspond directly to
routines in the netCDF C library. For example, the MATLAB function
netcdf.open corresponds to the netCDF library routine nc_open. In some
cases, one MATLAB function corresponds to a group of netCDF library
functions. For example, instead of creating MATLAB versions of every
netCDF library nc_put_att_type function, where type represents a data
type, MATLAB uses one function, netcdf.putAtt, to handle all supported
data types.

The syntax of the MATLAB functions is similar to the netCDF library
routines, with some exceptions. For example, the netCDF C library routines
use input parameters to return data, while their MATLAB counterparts
use one or more return values. For example, the following is the function
signature of the nc_open routine in the netCDF library. Note how the netCDF
file identifier is returned in the ncidp argument.

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */

The following shows the signature of the corresponding MATLAB function,
netcdf.open. Like its netCDF C library counterpart, the MATLAB netCDF
function accepts a character string that specifies the file name and a
constant that specifies the access mode. Note, however, that the MATLAB
netcdf.open function returns the file identifier, ncid, as a return value.

ncid = netcdf.open(filename, mode)

To see a list of all the functions in the MATLAB netCDF package, see the
netCDF reference page.

Mapping MATLAB Classes to netCDF Data Types
MATLAB attempts to map netCDF data types to the corresponding MATLAB
class that best matches. For example, netCDF functions map the MATLAB
double class to the netCDF NC_DOUBLE data type. The following table shows
this mapping. For more information about netCDF data types, you should
be familiar with the information about netCDF contained in the NetCDF C
Interface Guide for version 3.6.2.

7-9

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_3_6_2/
http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_3_6_2/

7 Scientific Data File Formats

MATLAB
Class

netCDF Data Type Notes

int8 NC_BYTE netCDF interprets byte data as either
signed or unsigned.

uint8 NC_BYTE netCDF interprets byte data as either
signed or unsigned.

char NC_CHAR

int16 NC_SHORT

uint16 No equivalent
int32 NC_INT

uint32 No equivalent
int64 No equivalent
uint64 No equivalent
single NC_FLOAT

double NC_DOUBLE

Example: Exploring the Contents of a netCDF File
This example shows how to use the MATLAB netCDF functions to explore the
contents of a netCDF file. The section uses the example netCDF file included
with MATLAB, example.nc, as an illustration. For an example of reading
data from a netCDF file, see “Example: Reading Data from a netCDF File”
on page 7-14

1 Open the netCDF file using the netcdf.open function. This function
returns an identifier that you use thereafter to refer to the file.

ncid = netcdf.open('example.nc','NC_NOWRITE');

2 Explore the contents of the file using the netcdf.inq function. This
function returns the number of dimensions, variables, and global attributes
in the file, and returns the identifier of the unlimited dimension in the file.
The unlimited dimension can grow.

[ndims,nvars,natts,unlimdimID]= netcdf.inq(ncid)

7-10

Network Common Data Form (netCDF) Files

ndims =

4

nvars =

4

natts =

1

unlimdimID =

3

3 Get more information about the dimensions, variables, and global
attributes in the file by using netCDF inquiry functions. For example,
to get information about the global attribute, first get the name of the
attribute, using the netcdf.inqAttName function. After you get the name,
'creation_date' in this case, you can use the netcdf.inqAtt function to
get information about the data type and length of the attribute.

To get the name of an attribute, you must specify the ID of the variable
the attribute is associated with and the attribute number. To access a
global attribute, which isn’t associated with a particular variable, use
the constant 'NC_GLOBAL' as the variable ID. The attribute number is
a zero-based index that identifies the attribute. For example, the first
attribute has the index value 0, and so on.

global_att_name = netcdf.inqAttName(ncid,netcdf.getConstant('NC_GLOBAL'),0)

global_att_name =

creation_date

[xtype attlen] = netcdf.inqAtt(ncid,netcdf.getConstant('NC_GLOBAL'),global_att_name)

7-11

7 Scientific Data File Formats

xtype =

2

attlen =

11

4 Get the value of the attribute, using the netcdf.getAtt function.

global_att_value = netcdf.getAtt(ncid,netcdf.getConstant('NC_GLOBAL'),global_att_name)

global_att_value =

09-Jun-2008

5 Get information about the dimensions defined in the file through a series
of calls to netcdf.inqDim. This function returns the name and length of
the dimension. The netcdf.inqDim function requires the dimension ID,
which is a zero-based index that identifies the dimensions. For example,
the first dimension has the index value 0, and so on.

[dimname, dimlen] = netcdf.inqDim(ncid,0)

dimname =

x

dimlen =

50

The following table describes the dimensions in the example file.

Dimension Name Dimension Length

x 50
y 50

7-12

Network Common Data Form (netCDF) Files

Dimension Name Dimension Length

z 5
t 0 (unlimited)

6 Get information about the variables in the file through a series of calls to
netcdf.inqVar. This function returns the name, data type, dimension
ID, and the number of attributes associated with the variable. The
netcdf.inqVar function requires the variable ID, which is a zero-based
index that identifies the variables. For example, the first variable has
the index value 0, and so on.

[varname, vartype, dimids, natts] = netcdf.inqVar(ncid,0)

varname =

avagadros_number

vartype =

6

dimids =

[]

natts =

1

The following table describes the variables in the example file. The data
type information is the numeric value of the netCDF data type constants,
such as, NC_INT and NC_BYTE. See the official netCDF documentation for
information about these constants.

7-13

7 Scientific Data File Formats

Variable Name Variable Type Variable
Dimension
IDs

Number of
Attributes

avagadros_number 6 [] 1
temperature 3 0 4
peaks 5 [0 1] 1
time_series 4 [2 3] 1

Example: Reading Data from a netCDF File
After you understand the contents of a netCDF file, by using the inquiry
functions, you can retrieve the data from the variables and attributes in the
file. To read the data associated with the variable avagadros_number in the
example file, use the netcdf.getVar function. The following example uses the
netCDF file identifier returned in the previous section, “Example: Exploring
the Contents of a netCDF File” on page 7-10. The variable ID is a zero-based
index that identifies the variables. For example, the first variable has the
index value 0, and so on. (To learn how to write data to a netCDF file, see
“Example: Storing Data in a netCDF File” on page 7-14.)

A_number = netcdf.getVar(ncid,0)

A_number =

6.0221e+023

The netCDF functions automatically choose the MATLAB class that best
matches the netCDF data type, but you can also specify the class of the return
data by using an optional argument to netcdf.getVar.

Example: Storing Data in a netCDF File
To store data in a netCDF file, you can use the MATLAB netCDF functions to
create a file, define dimensions in the file, create a variable in the file, and
write data to the variable. Note that you must define dimensions in the file
before you can create variables. To run the following example, you must have
write permission in your current directory.

7-14

Network Common Data Form (netCDF) Files

1 Create a variable in the MATLAB workspace. This example creates a
50-element vector of numeric values named my_data. The vector is of class
double.

my_data = linspace(0,49,50);

2 Create a netCDF file (or open an existing file). The example uses the
netcdf.create function to create a new file, named my_file.nc, and
opens it for write access.

ncid = netcdf.create('my_file.nc','NC_WRITE');

When you create a netCDF file, the file opens in define mode. You must be
in define mode to define dimensions and variables.

3 Define a dimension in the file, using the netcdf.defDim function. You
must define dimensions in the file before you can define variables and write
data to the file. When you define a dimension, you give it a name and a
length. To create an unlimited dimension, i.e., a dimension that can grow,
specify the constant NC_UNLIMITED in place of the dimension length.

dimid = netcdf.defDim(ncid,'my_dim',50);

4 Define a variable on the dimension, using the netcdf.defVar function.
When you define a variable, you give it a name, data type, and a dimension
ID. You must use one of the netCDF constants to specify the data type,
listed in “Mapping MATLAB Classes to netCDF Data Types” on page 7-9.

varid = netcdf.defVar(ncid,'my_var','NC_BYTE',dimid);

5 Take the netCDF file out of define mode. To write data to a file, you must
be in data mode.

netcdf.endDef(ncid);

6 Write the data from the MATLAB workspace into the variable in the
netCDF file, using the netcdf.putVar function. Note that the data in the
workspace is of class double but the variable in the netCDF file is of type
NC_BYTE. The MATLAB netCDF functions automatically do the conversion.

netcdf.putVar(ncid,varid,my_data);

7-15

7 Scientific Data File Formats

7 Close the file, using the netcdf.close function.

netcdf.close(ncid);

8 Verify that the data was written to the file by opening the file and reading
the data from the variable into a new variable in the MATLAB workspace.
Because the variable is the first variable in the file (and the only one), you
can specify 0 (zero) for the variable ID—identifiers are zero-based indexes.

ncid2 = netcdf.open('my_file.nc','NC_NOWRITE');

data_in_file = netcdf.getVar(ncid2,0)

data_in_file =

0
1
2
3
4
5
6
7
8
9
.
.
.

Because you stored the data in the file as NC_BYTE, MATLAB reads the data
from the variable into the workspace as class int8.

7-16

Flexible Image Transport System (FITS) Files

Flexible Image Transport System (FITS) Files

In this section...

“Getting Information About FITS Files” on page 7-17
“Importing Data from a FITS File” on page 7-18

Getting Information About FITS Files
To get information about the contents of a Flexible Image Transport System
(FITS) file, use the fitsinfo function. The FITS file format is the standard
data format used in astronomy, endorsed by both NASA and the International
Astronomical Union (IAU). For more information about the FITS standard, go
to the official FITS Web site, http://fits.gsfc.nasa.gov/.

A data file in FITS format can contain multiple components, each marked by
an ASCII text header followed by binary data. The first component in a FITS
file is known as the primary, which can be followed by any number of other
components, called extensions, in FITS terminology. The fitsinfo function
returns a structure containing the information about the file and detailed
information about the data in the file. This example returns information about
a sample FITS file included with MATLAB. The structure returned contains
fields for the primary component, PrimaryData, and all the extensions in the
file, such as the BinaryTable, Image, and AsciiTable extensions.

info = fitsinfo('tst0012.fits')

info =

Filename: 'tst0012.fits'
FileModDate: '12-Mar-2001 18:37:46'

FileSize: 109440
Contents: {1x5 cell}

PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

Unknown: [1x1 struct]
Image: [1x1 struct]

AsciiTable: [1x1 struct]

7-17

http://fits.gsfc.nasa.gov/

7 Scientific Data File Formats

Importing Data from a FITS File
To import data into the MATLAB workspace from a Flexible Image Transport
System (FITS) file, use the fitsread function. The FITS file format is
designed to store scientific data sets consisting of multidimensional arrays
(1-D spectra, 2-D images, or 3-D data cubes) and two-dimensional tables
containing rows and columns of data. Using this function, you can import the
data in the PrimaryData section of the file or you can import the data in
any of the extensions in the file, such as the Image extension. This example
illustrates how to use the fitsread function to read data from a FITS file:

1 Determine which extensions the FITS file contains, using the fitsinfo
function.

info = fitsinfo('tst0012.fits')

info =

Filename: 'tst0012.fits'
FileModDate: '12-Mar-2001 18:37:46'

FileSize: 109440
Contents: {1x5 cell}

PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

Unknown: [1x1 struct]
Image: [1x1 struct]

AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including
the BinaryTable, AsciiTable, and Image extensions.

2 Read data from the file.

To read the PrimaryData in the file, specify the filename as the only
argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the
extension as an optional parameter. This example reads the BinaryTable
extension from the FITS file:

7-18

Flexible Image Transport System (FITS) Files

bindata = fitsread('tst0012.fits','bintable');

Note To read the BinaryTable extension using fitsread, you must specify
the parameter 'bintable'. Similarly, to read the AsciiTable extension,
you must specify the parameter 'table'. See the fitsread reference page
for more information.

7-19

7 Scientific Data File Formats

Hierarchical Data Format (HDF5) Files

In this section...

“Using the MATLAB High-Level HDF5 Functions” on page 7-20
“Using the MATLAB Low-Level HDF5 Functions” on page 7-36

Note For information about working with HDF4 data, which is a completely
separate, incompatible format, see “Hierarchical Data Format (HDF4) Files”
on page 7-45.

Using the MATLAB High-Level HDF5 Functions
Hierarchical Data Format, Version 5, (HDF5) is a general-purpose,
machine-independent standard for storing scientific data in files, developed
by the National Center for Supercomputing Applications (NCSA). HDF5 is
used by a wide range of engineering and scientific fields that want a standard
way to store data so that it can be shared. For more information about the
HDF5 file format, read the HDF5 documentation available at the HDF Web
site (http://www.hdfgroup.org).

The MATLAB high-level HDF5 functions provide an easy way to import data
or metadata from an HDF5 file, or write data to an HDF5 file. The following
sections provide more detail about using these functions.

• “Determining the Contents of an HDF5 File” on page 7-20

• “Importing Data from an HDF5 File” on page 7-24

• “Exporting Data to HDF5 Files” on page 7-25

• “Mapping HDF5 Data Types to MATLAB Data Types” on page 7-27

Determining the Contents of an HDF5 File
HDF5 files can contain data and metadata, called attributes. HDF5 files
organize the data and metadata in a hierarchical structure similar to the
hierarchical structure of a UNIX file system.

7-20

http://www.hdfgroup.org

Hierarchical Data Format (HDF5) Files

In an HDF5 file, the directories in the hierarchy are called groups. A group
can contain other groups, data sets, attributes, links, and data types. A data
set is a collection of data, such as a multidimensional numeric array or string.
An attribute is any data that is associated with another entity, such as a data
set. A link is similar to a UNIX file system symbolic link. Links are a way to
reference data without having to make a copy of the data.

Data types are a description of the data in the data set or attribute. Data
types tell how to interpret the data in the data set. For example, a file might
contain a data type called “Reading” that is comprised of three elements: a
longitude value, a latitude value, and a temperature value.

To explore the hierarchical organization of an HDF5 file, use the hdf5info
function. For example, to find out what the sample HDF5 file, example.h5,
contains, use this syntax:

fileinfo = hdf5info('example.h5');

hdf5info returns a structure that contains various information about the
HDF5 file, including the name of the file and the version of the HDF5 library
that MATLAB is using:

fileinfo =

Filename: 'example.h5'
LibVersion: '1.6.5'

Offset: 0
FileSize: 8172

GroupHierarchy: [1x1 struct]

In the information returned by hdf5info, look at the GroupHierarchy field.
This field is a structure that describes the top-level group in the file, called
the root group. Using the UNIX convention, HDF5 names this top-level group
/ (forward slash), as shown in the Name field of the GroupHierarchy structure.

toplevel = fileinfo.GroupHierarchy

toplevel =

Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
Name: '/'

7-21

7 Scientific Data File Formats

Groups: [1x2 struct]
Datasets: []

Datatypes: []
Links: []

Attributes: [1x2 struct]

By looking at the Groups and Attributes fields, you can see that the file
contains two groups and two attributes. The Datasets, Datatypes, and Links
fields are all empty, indicating that the root group does not contain any data
sets, data types, or links.

The following figure illustrates the organization of the root group in the
sample HDF5 file example.h5.

Organization of the Root Group of the Sample HDF5 File

To explore the contents of the sample HDF5 file further, examine one of the
two structures in the Groups field of the GroupHierarchy structure. Each
structure in this field represents a group contained in the root group. The
following example shows the contents of the second structure in this field.

level2 = toplevel.Groups(2)

level2 =

Filename: 'C:\matlab\toolbox\matlab\demos\example.h5'
Name: '/g2'

Groups: []
Datasets: [1x2 struct]

Datatypes: []
Links: []

Attributes: []

7-22

Hierarchical Data Format (HDF5) Files

In the sample file, the group named /g2 contains two data sets. The following
figure illustrates this part of the sample HDF5 file organization.

Organization of the Data Set /g2 in the Sample HDF5 File

To get information about a data set, look at either of the structures returned
in the Datasets field. These structures provide information about the data
set, such as its name, dimensions, and data type.

dataset1 = level2.Datasets(1)

dataset1 =
Filename: 'L:\matlab\toolbox\matlab\demos\example.h5'

Name: '/g2/dset2.1'
Rank: 1

Datatype: [1x1 struct]
Dims: 10

MaxDims: 10
Layout: 'contiguous'

Attributes: []
Links: []

Chunksize: []
Fillvalue: []

7-23

7 Scientific Data File Formats

By examining the structures at each level of the hierarchy, you can traverse
the entire file. The following figure describes the complete hierarchical
organization of the sample file example.h5.

Hierarchical Structure of example.h5 HDF5 File

Importing Data from an HDF5 File
To read data or metadata from an HDF5 file, use the hdf5read function. As
arguments, you must specify the name of the HDF5 file and the name of
the data set or attribute. Alternatively, you can specify just the field in the
structure returned by hdf5info that contains the name of the data set or
attribute; hdf5read can determine the file name from the Filename field in
the structure. For more information about finding the name of a data set or
attribute in an HDF5 file, see “Determining the Contents of an HDF5 File”
on page 7-20.

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5
sample file example.h5.

data = hdf5read('example.h5','/g2/dset2.1');

7-24

Hierarchical Data Format (HDF5) Files

The return value contains the values in the data set, in this case a 1-by-10
vector of single-precision values:

data =

1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000

The hdf5read function maps HDF5 data types to appropriate MATLAB data
types, whenever possible. If the HDF5 file contains data types that cannot
be represented in MATLAB, hdf5write uses one of the predefined MATLAB
HDF5 data type objects to represent the data.

For example, if an HDF5 data set contains four array elements, hdf5read can
return the data as a 1-by-4 array of hdf5.h5array objects:

whos

Name Size Bytes Class

data 1x4 hdf5.h5array

Grand total is 4 elements using 0 bytes

For more information about the MATLAB HDF5 data type objects, see
“Mapping HDF5 Data Types to MATLAB Data Types” on page 7-27.

Exporting Data to HDF5 Files
To write data or metadata from the MATLAB workspace to an HDF5 file, use
the hdf5write function. As arguments, specify:

• Name of an existing HDF5 file, or the name you want to assign to a new file.

7-25

7 Scientific Data File Formats

• Name of an existing data set or attribute, or the name you want to assign
to a new data set or attribute. To learn how to determine the name of data
sets in an existing HDF5 file, see “Determining the Contents of an HDF5
File” on page 7-20.

• Data or metadata you want to write to the file. hdf5write converts
MATLAB data types to the appropriate HDF5 data type automatically.
For nonatomic data types, you can also create HDF5 objects to represent
the data.

This example creates a 5-by-5 array of uint8 values and then writes the
array to an HDF5 file. By default, hdf5write overwrites the file, if it already
exists. The example specifies an hdf5write mode option to append data to
existing file.

1 Create a MATLAB variable in the workspace. This example creates a
5-by-5 array of uint8 values.

testdata = uint8(magic(5))

2 Write the data to an HDF5 file. As arguments to hdf5read, the example
specifies the name you want to assign to the HDF5 file, the name you want
to assign to the data set, and the MATLAB variable.

hdf5write('myfile.h5', '/dataset1', testdata)

To add data to an existing file, you must use the 'writemode' option,
specifying the'append' value. The file must already exist and it cannot
already contain a data set with the same name

hdf5write('myfile.h5', '/dataset12', testdata,'writemode','append')

If you are writing simple data sets, such as scalars, strings, or a simple
compound data types, you can just pass the data directly to hdf5write; this
function automatically maps the MATLAB data types to appropriate HDF5
data types. However, if your data is a complex data set, you might need to
use one of the predefined MATLAB HDF5 objects to pass the data to the
hdf5write function. The HDF5 objects are designed for situations where the
mapping between MATLAB and HDF5 types is ambiguous.

For example, when passed a cell array of strings, the hdf5write function
writes a data set made up of strings, not a data set of arrays containing

7-26

Hierarchical Data Format (HDF5) Files

strings. If that is not the mapping you intend, use HDF5 objects to specify
the correct mapping. In addition, note that HDF5 makes a distinction
between the size of a data set and the size of a data type. In MATLAB, data
types are always scalar. In HDF5, data types can have a size; that is, types
can be either scalar (like MATLAB) or m-by-n. In HDF5, a 5-by-5 data set
containing a single uint8 value in each element is distinct from a 1-by-1 data
set containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value; in the second case, the data set
contains a single observation with 25 values. For more information about
the MATLAB HDF5 data type objects, see “Mapping HDF5 Data Types to
MATLAB Data Types” on page 7-27.

Mapping HDF5 Data Types to MATLAB Data Types
When the hdf5read function reads data from an HDF5 file into the MATLAB
workspace, it maps HDF5 data types to MATLAB data types, depending on
whether the data in the data set is in an atomic data type or a nonatomic
composite data type.

Mapping Atomic Data Types. Atomic data types describe commonly used
binary formats for numbers (integers and floating point) and characters
(ASCII). Because different computing architectures and programming
languages support different number and character representations, the HDF5
library provides the platform-independent data types, which it then maps to
an appropriate data type for each platform. For example, a computer may
support 8-, 16-, 32-, and 64-bit signed integers, stored in memory in little
endian byte order.

If the data in the data set is stored in one of the HDF5 atomic data types,
hdf5read uses the equivalent MATLAB data type to represent the data. Each
data set contains a Datatype field that names the data type. For example,
the data set /g2/dset2.2 in the sample HDF5 file includes atomic data and
data type information.

dtype = dataset1.Datatype
dtype =

Name: []
Class: 'H5T_IEEE_F32BE'

Elements: []

7-27

7 Scientific Data File Formats

The H5T_IEEE_F32BE class name indicates the data is a 4-byte, big endian,
IEEE floating-point data type. (See the HDF5 specification for more
information about atomic data types.)

Mapping Composite Data Types. A composite data type is an aggregation
of one or more atomic data types. Composite data types include structures,
multidimensional arrays, and variable-length data types (one-dimensional
arrays).

If the data in the data set is stored in one of the HDF5 nonatomic data types
and the data cannot be represented in the workspace using a native MATLAB
data type,hdf5read uses one of a set of classes MATLAB defines to represent
HDF5 data types. The following figure illustrates the hdf5 class and its
subclasses. For more information about a specific class, see the sections that
follow. To learn more about the HDF5 data types in general, see the HDF
Web page at http://www.hdfgroup.org.

������

����

������# ����-$�
�� ������������
-

For example, if an HDF5 file contains a data set made up of an enumerated
data type which cannot be represented in MATLAB, hdf5read uses the HDF5
h5enum class to represent the data. An h5enum object has data members
that store the enumerations (text strings), their corresponding values, and
the enumerated data.

You might also need to use these HDF5 data type classes when using the
hdf5write function to write data from the MATLAB workspace to an HDF5
file. By default, hdf5write can convert most MATLAB data to appropriate
HDF5 data types. However, if this default data type mapping is not suitable,
you can create HDF5 data types directly.

7-28

http://www.hdfgroup.org

Hierarchical Data Format (HDF5) Files

To access the data in the data set in the MATLAB workspace, you must access
the Data field in the object.

This example converts a simple MATLAB vector into an h5array object and
then displays the fields in the object:

vec = [1 2 3];

hhh = hdf5.h5array(vec);

hhh:

Name: ''
Data: [1 2 3]

hhh.Data

ans =

1 2 3

MATLAB HDF5 h5array Data Class. The h5array data class associates
a name with an array. The following tables list the class constructors, data
members, and methods.

Constructors Description

arr = hdf5.h5array Creates an h5array object.
arr =
hdf5.h5array(data)

Creates an h5array object, where data specifies
the value of the Data member. data can be
numeric, a cell array, or an HDF5 data type.

Data Members Description

Data Multidimensional array
Name Text string specifying name of the object

7-29

7 Scientific Data File Formats

Methods Description

setData(arr, data) Sets the value of the Data member, where arr is
an h5array object and data can be numeric, a cell
array, or an HDF5 data type.

setName(arr, name) Sets the value of the Name member, where arr
is an h5array object and name is a string or cell
array.

MATLAB HDF5 h5compound Data Class. The h5compound data class
associates a name with a structure. You can define the field names in the
structure and their values. The following tables list the class constructors,
data members, and methods.

Constructors Description

C = hdf5.h5compound Creates an h5compound object.
C = hdf5.h5compound(n1,n2,...) Creates an h5compound object, where n1, n2 and so

on are text strings that specify field names. The
constructor creates a corresponding data field for every
member name.

Data Members Description

Data Multidimensional array
Name Text string specifying name of the object
MemberNames Text strings specifying name of the object

Methods Description

addMember(C, mName) Creates a new field in the object C. mName specifies the
name of the field.

setMember(C, mName, mData) Sets the value of the Data element associated with
the field specified by mName, where C is an h5compound
object and mData can be numeric or an HDF5 data type.

7-30

Hierarchical Data Format (HDF5) Files

Methods Description

setMemberNames(C, n1, n2,...) Specifies the names of fields in the structure, where C
is an h5compound object and n1,n2, and so on are text
strings that specify field names. The method creates a
corresponding data field for every name specified.

setName(C, name) Sets the value of the Name member, where C is an
h5compound object and name is a string or cell array.

MATLAB HDF5 h5enum Data Class. The h5enum data class defines an
enumerated type. You can specify the enumerations (text strings) and the
values they represent. The following tables list the class constructors, data
members, and methods.

Constructors Description

E = hdf5.h5enum Creates an h5enum object.
E = hdf5.h5enum(eNames, eVals) Creates an h5enum object, where eNames is a cell array

of strings, and eVals is vector of integers. eNames and
eVals must have the same number of elements.

Data Members Description

Data Multidimensional array
Name Text string specifying name of the object
EnumNames Text string specifying the enumerations, that is, the

text strings that represent values
EnumValues Values associated with enumerations

Methods Description

defineEnum(E, eNames, eVals) Defines the set of enumerations with the integer values
they represent where eNames is a cell array of strings,
and eVals is vector of integers. eNames and eVals
must have the same number of elements.

7-31

7 Scientific Data File Formats

Methods Description

enumdata = getString(E) Returns a cell array containing the names of the
enumerations, where E is an h5enum object.

setData(E, eData) Sets the value of the object’s Data member, where E is
an h5enum object and eData is a vector of integers.

setEnumNames(E, eNames) Specifies the enumerations, where E is an h5enum
object and eNames is a cell array of strings.

setEnumValues(E, eVals) Specifies the value associated with each enumeration,
where E is an h5enum object and eVals is a vector of
integers.

setName(E, name) Sets the value of the object’s Name member, where E is
an h5enum object and name is a string or cell array.

This example uses an HDF5 enumeration object.

1 Create an HDF5 enumerated object.

enum_obj = hdf5.h5enum;

2 Define the enumerated values and their corresponding names.

enum_obj.defineEnum({'RED' 'GREEN' 'BLUE'}, uint8([1 2 3]));

enum_obj now contains the definition of the enumeration that associates
the names RED, GREEN, and BLUE with the numbers 1, 2, and 3.

3 Add enumerated data to the object.

enum_obj.setData(uint8([2 1 3 3 2 3 2 1]));

In the HDF5 file, these numeric values map to the enumerated values
GREEN, RED, BLUE, BLUE, GREEN, etc.

4 Write the enumerated data to a data set named objects in an HDF5 file.

hdf5write('myfile3.h5', '/g1/objects', enum_obj);

5 Read the enumerated data set from the file.

7-32

Hierarchical Data Format (HDF5) Files

ddd = hdf5read('myfile3.h5','/g1/objects')

hdf5.h5enum:

Name: ''
Data: [2 1 3 3 2 3 2 1]

EnumNames: {'RED' 'GREEN' 'BLUE'}
EnumValues: [1 2 3]

MATLAB HDF5 h5string Data Class. The h5string data class associates
a name with a text string and provides optional padding behavior. The
following tables list the class constructors, data members, and methods.

Constructors Description

str = hdf5.h5string Creates an h5string object.
str = hdf5.h5string(data) Creates an h5string object, where data is a text

string.
str = hdf5.h5string(data, padtype) Creates an h5stringobject, where data is a text

string and padtype specifies the type of padding to
use.

Data Members Description

Data Multidimensional array
Name Text string specifying name of the object
Length Scalar defining length of string
Padding Type of padding to use:

'spacepad'
'nullterm'
'nullpad'

Methods Description

setData(str, data) Sets the value of the object’s Data member, where
str is an h5string object anddata is a text string.

7-33

7 Scientific Data File Formats

Methods Description

setLength(str, lenVal) Sets the value of the object’s Length member, where
str is an h5string object and lenVal is a scalar.

setName(str, name) Sets the value of the object’s Name member, where
str is an h5string object and name is a string or
cell array.

setPadding(str, padType) Specifies the value of the object’s Padding member,
where str is an h5string object and padType is a
text string specifying one of the supported pad types.

This example uses an HDF5 string object.

1 Create an HDF5 string object, specifying the text string you want it to
contain.

myH5str = hdf5.h5string('this is a string')

hdf5.h5string:

Name: ''
Length: 16

Padding: 'nullterm'
Data: 'this is a string'

2 See how the generated object is of class hdf5.h5string in the workspace.

whos
Name Size Bytes Class Attributes

myH5str 1x1 hdf5.h5string

3 Set the name of the object, using a HDF5 string object method, and view
the object again.

setName(myH5str, 'my H5 string object')

myH5str

7-34

Hierarchical Data Format (HDF5) Files

hdf5.h5string:

Name: 'my H5 string object'
Length: 16

Padding: 'nullterm'
Data: 'this is a string'

MATLAB HDF5 h5vlen Data Class. The h5vlen data class creates a
variable-length array, that is, an array in which the elements can have
different lengths. This is also called a ragged array. The following tables list
the class constructors, data members, and methods.

Constructors Description

V = hdf5.h5vlen Creates an h5vlen object.
V = hdf5.h5vlen(data) Creates an h5vlen object, where data specifies

the value of the Data member. data can be
numeric or an HDF5 data type.

Data Members Description

Data Multidimensional array
Name Text string specifying name of the object

Methods Description

setData(V, data) Sets the value of the object’s Data member,
where V is an h5vlen object and data can be
a scalar, vector, text string, a cell array, or an
HDF5 data type.

setName(V, name) Sets the value of the object’sName member,
where V is an h5vlen object and name is a string
or cell array.

The following example creates an array of HDF5 h5vlen objects. The h5vlen
objects contain numeric vectors of various lengths.

v(1) = hdf5.h5vlen([1:5]);

7-35

7 Scientific Data File Formats

v(2) = hdf5.h5vlen([7:-1:3]);
v(3) = hdf5.h5vlen([1:2:8]);

Using the MATLAB Low-Level HDF5 Functions
MATLAB provides direct access to the over 200 functions in the HDF5 library
by creating MATLAB functions that correspond to the functions in the HDF5
library. In this way, you can access the features of the HDF5 library from
MATLAB, such as reading and writing complex data types and using the
HDF5 subsetting capabilities.

The HDF5 library organizes the library functions into groups, called
interfaces. For example, all the routines related to working with files, such
as opening and closing, are in the H5F interface, where F stands for file.
MATLAB organizes the low-level HDF5 functions into classes that correspond
to each HDF5 interface. For example, the MATLAB functions that correspond
to the HDF5 file interface (H5F) are in the @H5F class directory. For a
complete list of the HDF5 interfaces and the corresponding MATLAB class
directories, see hdf5.

The following sections provide more details about how to use the MATLAB
HDF5 low-level functions. Topics covered include:

• “Mapping HDF5 Function Syntax to MATLAB Function Syntax” on page
7-37

• “Mapping Between HDF5 Data Types and MATLAB Data Types” on page
7-39

• “Example: Using the MATLAB HDF5 Low-level Functions” on page 7-41

• “Preserving the Correct Layout of Your Data” on page 7-44

Note This section does not attempt to describe all features of the HDF5
library or explain basic HDF5 programming concepts. To use the MATLAB
HDF5 low-level functions effectively, you must refer to the official HDF5
documentation available at the HDF Web site (http://www.hdfgroup.org).

7-36

http://www.hdfgroup.org

Hierarchical Data Format (HDF5) Files

Mapping HDF5 Function Syntax to MATLAB Function Syntax
In most cases, the syntax of the MATLAB low-level HDF5 functions is
identical to the syntax of the corresponding HDF5 library functions. For
example, the following is the function signature of the H5Fopen function in
the HDF5 library. In the HDF5 function signatures, hid_t and herr_t are
HDF5 types that return numeric values that represent object identifiers or
error status values.

hid_t H5Fopen(const char *name, unsigned flags, hid_t access_id) /* C syntax */

In MATLAB, each function in an HDF5 interface is a method of a MATLAB
class. To view the function signature for a function, specify the class directory
name and then the function name, as in the following.

help @H5F/open

The following shows the signature of the corresponding MATLAB function.
First note that, because it’s a method of a class, you must use the dot notation
to call the MATLAB function: H5F.open. This MATLAB function accepts the
same three arguments as the HDF5 function: a text string for the name,
an HDF5-defined constant for the flags argument, and an HDF5 property
list ID. You use property lists to specify characteristics of many different
HDF5 objects. In this case, it’s a file access property list. Refer to the HDF5
documentation to see which constants can be used with a particular function
and note that, in MATLAB, constants are passed as text strings.

file_id = H5F.open(name, flags, plist_id)

There are, however, some functions where the MATLAB function signature
is different than the corresponding HDF5 library function. The following
sections describe some general differences that you should keep in mind when
using the MATLAB low-level HDF5 functions.

• “Output Parameters Become Return Values” on page 7-38

• “String Length Parameters Unnecessary” on page 7-38

• “Use Empty Array to Specify NULL” on page 7-38

• “Specifying Multiple Constants” on page 7-39

7-37

7 Scientific Data File Formats

Output Parameters Become Return Values. Some HDF5 library
functions use function parameters to return data on the right-hand side
(RHS) of the function signature, i.e. as input parameters. The corresponding
MATLAB function, because MATLAB allows multiple return values, moves
these output parameters to the left-hand side (LHS) of the function signature,
i.e. as return values. To illustrate, look at the H5Dread function. This function
returns data in the buf parameter.

herr_t H5Dread(hid_t dataset_id, hid_t mem_type_id, hid_t mem_space_id,

hid_t file_space_id, hid_t xfer_plist_id, void * buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into
a return value. Note that the HDF5 error return is not used. In MATLAB, the
nonzero or negative value herr_t return values become MATLAB errors. Use
MATLAB try-catch statements to handle errors.

buf = H5D.read(dataset_id, mem_type_id, mem_space_id, file_space_id, plist_id)

String Length Parameters Unnecessary. The length parameter used
by some HDF5 library functions to specify the length of string parameters
are not necessary in the corresponding MATLAB function. For example, the
H5Aget_name function in the HDF5 library includes a buffer as an output
parameter and the size of the buffer as an input parameter.

ssize_t H5Aget_name(hid_t attr_id,size_t buf_size,char *buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into
a return value and drops the buf_size parameter:

attr_name = H5A.get_name(attr_id)

Use Empty Array to Specify NULL. The MATLAB functions use empty
arrays ([]) where HDF5 library functions accept the value NULL. For example,
the H5Dfill function in the HDF5 library accepts the value NULL in place of
a specified fill value.

herr_t H5Dfill(const void *fill, hid_t fill_type_id, void *buf,

hid_t buf_type_id, hid_t space_id) /* C syntax */

When using the corresponding MATLAB function, you can specify an empty
array ([]) instead of NULL.

7-38

Hierarchical Data Format (HDF5) Files

Specifying Multiple Constants. Some functions in the HDF5 library require
you to specify an array of constants. For example, in the H5Screate_simple
function, if you want to specify that each dimension in the data space can
be unlimited, you use the constant H5S_UNLIMITED for each dimension in
maxdims. In MATLAB, because you pass constants as text strings, you must
use a cell array to achieve the same result. The following code fragment
provides an example of using a cell array to specify this constant for each
dimension of this data space.

ds_id = H5S.create_simple(2,[3 4],{'H5S_UNLIMITED' 'H5S_UNLIMITED'});

Mapping Between HDF5 Data Types and MATLAB Data Types
When the HDF5 low-level functions read data from an HDF5 file or write
data to an HDF5 file, the functions map HDF5 data types to MATLAB data
types automatically.

For atomic data types, such as commonly used binary formats for numbers
(integers and floating point) and characters (ASCII), the mapping is typically
straightforward because MATLAB supports similar types. See the table
Mapping Between HDF5 Atomic Data Types and MATLAB® Data Types on
page 7-39 for a list of these mappings.

Mapping Between HDF5 Atomic Data Types and MATLAB Data Types

HDF5 Atomic
Data Type

MATLAB Data Type

Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they

occupy 64 bits or fewer
Integer types,
signed and
unsigned

Equivalent MATLAB integer types, signed and
unsigned

Opaque Array of uint8 values
Reference Array of uint8 values
String MATLAB character arrays.

7-39

7 Scientific Data File Formats

For composite data types, such as aggregations of one or more atomic data
types into structures, multidimensional arrays, and variable-length data
types (one-dimensional arrays), the mapping is sometimes ambiguous with
reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing
a single uint8 value in each element is distinct from a 1-by-1 data set
containing a 5-by-5 array of uint8 values. In the first case, the data set
contains 25 observations of a single value; in the second case, the data set
contains a single observation with 25 values. In MATLAB both of these data
sets are represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data
types directly to make sure you have the mapping you intend. See the table
Mapping Between HDF5 Composite Data Types and MATLAB® Data Types
on page 7-40 for a list of the default mappings. You can specify the data type
when you write data to the file using the H5Dwrite function. See the HDF5
data type interface documentation for more information.

Mapping Between HDF5 Composite Data Types and MATLAB Data
Types

HDF5 Composite
Data Type

MATLAB Data Type

Array Extends the dimensionality of the data type which
it contains. For example, an array of an array of
integers in HDF5 would map onto a two dimensional
array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing
HDF5 data in MATLAB are scalar.

Enumeration Array of integers which each have an associated name
Variable Length MATLAB 1-D cell arrays

Reporting Data Set Dimensions. The MATLAB low-level HDF5 functions
report data set dimensions and the shape of data sets differently than the
MATLAB high-level functions. For ease of use, the MATLAB high-level
functions report data set dimensions consistent with MATLAB column-major
indexing. To be consistent with the HDF5 library, and to support the
possibility of nested data sets and complicated data types, the MATLAB
low-level functions report array dimensions using the C row-major orientation.

7-40

Hierarchical Data Format (HDF5) Files

Example: Using the MATLAB HDF5 Low-level Functions
This example shows how to use the MATLAB HDF5 low-level functions to
write a data set to an HDF5 file and then read the data set from the file.

1 Create the MATLAB variable that you want to write to the HDF5 file. The
examples creates a two-dimensional array of uint8 data.

testdata = [1 3 5; 2 4 6];

2 Create the HDF5 file or open an existing file. The example creates a new
HDF5 file, named my_file.h5, in the system temp directory.

filename = fullfile(tempdir,'my_file.h5');

fileID = H5F.create(filename,'H5F_ACC_TRUNC','H5P_DEFAULT','H5P_DEFAULT');

In HDF5, you use the H5Fcreate function to create a file. The example
uses the MATLAB equivalent, H5F.create. As arguments, specify the
name you want to assign to the file, the type of access you want to the file
('H5F_ACC_TRUNC' in the example), and optional additional characteristics
specified by a file creation property list and a file access property list. This
example uses default values for these property lists ('H5P_DEFAULT').
In the example, note how the C constants are passed to the MATLAB
functions as strings. The function returns an ID to the HDF5 file.

3 Create the data set in the file to hold the MATLAB variable. In the HDF5
programming model, you must define the data type and dimensionality
(data space) of the data set as separate entities.

a Specify the data type used by the data set. In HDF5, you use the
H5Tcopy function to create integer or floating-point data types. The
example uses the corresponding MATLAB function, H5T.copy, to create
a double data type because the MATLAB data is double. The function
returns a data type ID.

datatypeID = H5T.copy('H5T_NATIVE_DOUBLE');

b Specify the dimensions of the data set. In HDF5, you use the
H5Screate_simple routine to create a data space. The example uses the
corresponding MATLAB function, H5S.create_simple, to specify the
dimensions. The function returns a data space ID.

7-41

7 Scientific Data File Formats

Because HDF5 stores data in row-major order and the MATLAB array
is organized in column-major order, you should reverse the ordering of
the dimension extents before using H5Screate_simple to preserve the
layout of the data. You can use fliplr for this purpose. For a list of
other HDF5 functions that require dimension flipping, see “Preserving
the Correct Layout of Your Data” on page 7-44.

dims = size(testdata);
dataspaceID = H5S.create_simple(3, fliplr(dims), []);

Other software programs that use row-major ordering (such as H5DUMP
from the HDF Group) may report the size of the dataset to be 3-by-2
instead of 2-by-3.

c Create the data set. In HDF5, you use the H5Dcreate routine to create
a data set. The example uses the corresponding MATLAB function,
H5D.create, specifying the file ID, the name you want to assign to
the data set, data type ID, the data space ID, and a data set creation
property list ID as arguments. The example uses the defaults for the
property lists. The function returns a data set ID.

dsetname = 'my_dataset';

datasetID = H5D.create(fileID,dsetname,datatypeID,dataspaceID,'H5P_DEFAULT');

Note To write a large data set, you must use the chunking capability
of the HDF5 library. To do this, create a property list and use the
H5P.set_chunk function to set the chunk size in the property list. In the
following example, the dimensions of the data set are dims = [2^16
2^16] and the chunk size is 1024-by-1024. You then pass the property
list as the last argument to the data set creation function, H5D.create,
instead of using the H5P_DEFAULT value.

plistID = H5P.create('H5P_DATASET_CREATE'); % create property list

chunk_size = min([1024 1024], dims); % define chunk size

H5P.set_chunk(plistID, chunk_size); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);

7-42

Hierarchical Data Format (HDF5) Files

4 Write the data to the data set. In HDF5, you use the H5Dwrite routine to
write data to a data set. The example uses the corresponding MATLAB
function, H5D.write, specifying as arguments the data set ID, the memory
data type ID, the memory space ID, the data space ID, the transfer property
list ID and the name of the MATLAB variable to be written to the data set.

You can use the memory data type to specify the data type used to represent
the data in the file. The example uses the constant 'H5ML_DEFAULT' which
lets the MATLAB function do an automatic mapping to HDF5 data types.
The memory data space ID and the data set’s data space ID specify to write
subsets of the data set to the file. The example uses the constant 'H5S_ALL'
to write all the data to the file and uses the default property list.

H5D.write(datasetID,'H5ML_DEFAULT','H5S_ALL','H5S_ALL', ...

'H5P_DEFAULT', testdata);

If you had not reversed the ordering of the dimension extents in step 3b
above, you would have been required to permute the MATLAB array before
using H5D.write, which could result in an enormous performance penalty.

5 Close the data set, data space, data type, and file objects. If used inside a
MATLAB function, these identifiers are closed automatically when they
go out of scope.

H5D.close(datasetID);
H5S.close(dataspaceID);
H5T.close(datatypeID);
H5F.close(fileID);

6 To read the data set you wrote to the file, you must open the file. In HDF5,
you use the H5Fopen routine to open an HDF5 file, specifying the name of
the file, the access mode, and a property list as arguments. The example
uses the corresponding MATLAB function, H5F.open, opening the file for
read-only access.

fileID = H5F.open(filename,'H5F_ACC_RDONLY','H5P_DEFAULT');

7 After opening the file, you must open the data set. In HDF5, you use the
H5Dopen function to open a data set. The example uses the corresponding
MATLAB function, H5D.open, specifying as arguments the file ID and the
name of the data set, defined earlier in the example.

7-43

7 Scientific Data File Formats

datasetID = H5D.open(fileID, dsetname);

8 After opening the data set, you can read the data into the MATLAB
workspace. In HDF5, you use the H5Dread function to read an HDF5
file. The example uses the corresponding MATLAB function, H5D.read,
specifying as arguments the data set ID, the memory data type ID, the
memory space ID, the data space ID, and the transfer property list ID.

returned_data = H5D.read(datasetID,'H5ML_DEFAULT',...
'H5S_ALL','H5S_ALL','H5P_DEFAULT');

You can compare the original MATLAB variable, testdata, with the
variable just created, data, to see if they are the same.

Preserving the Correct Layout of Your Data
When you use any of the following functions that deal with dataspaces, you
should flip dimension extents to preserve the correct layout of the data, as
illustrated in step 3b in “Example: Using the MATLAB HDF5 Low-level
Functions” on page 7-41.

• H5D.set_extent

• H5P.get_chunk

• H5P.set_chunk

• H5S.create_simple

• H5S.get_simple_extent_dims

• H5S.select_hyperslab

• H5T.array_create

• H5T.get_array_dims

7-44

Hierarchical Data Format (HDF4) Files

Hierarchical Data Format (HDF4) Files

In this section...

“Using the HDF Import Tool” on page 7-45
“Using the HDF Import Tool Subsetting Options” on page 7-50
“Using the MATLAB HDF4 High-Level Functions” on page 7-62
“Using the HDF4 Low-Level Functions” on page 7-65

Note For information about importing HDF5 data, which is a separate,
incompatible format, see “Hierarchical Data Format (HDF5) Files” on page
7-20.

Using the HDF Import Tool
Hierarchical Data Format (HDF4) is a general-purpose, machine-independent
standard for storing scientific data in files, developed by the National
Center for Supercomputing Applications (NCSA). For more information
about these file formats, read the HDF documentation at the HDF Web site
(www.hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National
Aeronautics and Space Administration (NASA) for storage of data returned
from the Earth Observing System (EOS). For more information about this
extension to HDF4, see the HDF-EOS documentation at the NASA Web site
(www.hdfeos.org).

The HDF Import Tool is a graphical user interface that you can use to
navigate through HDF4 or HDF-EOS files and import data from them.
Importing data using the HDF Import Tool involves these steps:

• “Step 1: Opening an HDF4 File in the HDF Import Tool” on page 7-46

• “Step 2: Selecting a Data Set in an HDF File” on page 7-47

• “Step 3: Specifying a Subset of the Data (Optional)” on page 7-48

• “Step 4: Importing Data and Metadata” on page 7-49

7-45

http://www.hdfgroup.org
http://www.hdfeos.org

7 Scientific Data File Formats

• “Step 5: Closing HDF Files and the HDF Import Tool” on page 7-50

The following sections provide more detail about each of these steps.

Step 1: Opening an HDF4 File in the HDF Import Tool
Open an HDF4 or HDF-EOS file in MATLAB using one of the following
methods:

• Choose the Import Data option from the MATLAB Filemenu. If you select
an HDF4 or HDF-EOS file, the MATLAB Import Wizard automatically
starts the HDF Import Tool.

• Start the HDF Import Tool by entering the hdftool command at the
MATLAB command line:

hdftool

This opens an empty HDF Import Tool. To open a file, click the Open
option on the HDFTool File menu and select the file you want to open. You
can open multiple files in the HDF Import Tool.

• Open an HDF or HDF-EOS file by specifying the file name with the
hdftool command on the MATLAB command line:

hdftool('example.hdf')

Viewing a File in the HDF Import Tool. When you open an HDF4 or
HDF-EOS file in the HDF Import Tool, the tool displays the contents of the
file in the Contents pane. You can use this pane to navigate within the file
to see what data sets it contains. You can view the contents of HDF-EOS
files as HDF data sets or as HDF-EOS files. The icon in the contents pane
indicates the view, as illustrated in the following figure. Note that these
are just two views of the same data.

7-46

Hierarchical Data Format (HDF4) Files

8��!��������
92����
92�6:;"

�������-�

���������$��� 5��������$����

�-$����������
"
��������
$���

Step 2: Selecting a Data Set in an HDF File
To import a data set, you must first select the data set in the contents pane of
the HDF Import Tool. Use the Contents pane to view the contents of the file
and navigate to the data set you want to import.

For example, the following figure shows the data set Example SDS in the
HDF file selected. Once you select a data set, the Metadata panel displays
information about the data set and the importing and subsetting pane
displays subsetting options available for this type of HDF object.

7-47

7 Scientific Data File Formats

"�������
��������

2�������
-�������

"
��������
�$��������������
92����<���

Step 3: Specifying a Subset of the Data (Optional)
When you select a data set in the contents pane, the importing and subsetting
pane displays the subsetting options available for that type of HDF object.
The subsetting options displayed vary depending on the type of HDF object.
For more information, see “Using the HDF Import Tool Subsetting Options”
on page 7-50.

7-48

Hierarchical Data Format (HDF4) Files

Step 4: Importing Data and Metadata
To import the data set you have selected, click the Import button, bottom
right corner of the Importing and Subsetting pane. Using the Importing and
Subsetting pane, you can

• Specify the name of the workspace variable — By default, the HDF
Import Tool uses the name of the HDF4 data set as the name of the
MATLAB workspace variable. In the following figure, the variable name
is Example_SDS. To specify another name, enter text in the Workspace
Variable text box.

• Specify whether to import metadata associated with the data set — To
import any metadata that might be associated with the data set, select the
Import Metadata check box. To store the metadata, the HDF Import
Tool creates a second variable in the workspace with the same name with
“_info” appended to it. For example, if you select this check box, the
name of the metadata variable for the data set in the figure would be
Example_SDS_info.

• Save the data set import command syntax — The Dataset import
command text window displays the MATLAB command used to import
the data set. This text is not editable, but you can copy and paste it into the
MATLAB Command Window or a text editor for reuse.

The following figure shows how to specify these options in the HDF Import
Tool.

�-$����-�������
!������������

"$����#���-����
�����������������
��������

5=>7=?���--���

��������-$��������

����4����������-$���
��������

7-49

7 Scientific Data File Formats

Step 5: Closing HDF Files and the HDF Import Tool
To close a file, select the file in the contents pane and click Close File on the
HDF Import Tool File menu.

To close all the files open in the HDF Import Tool, click Close All Files on
the HDF Import Tool File menu.

To close the tool, click Close HDFTool in the HDF Import Tool File menu or
click the Close button in the upper right corner of the tool.

If you used the hdftool syntax that returns a handle to the tool,

h = hdftool('example.hdf')

you can use the close(h) command to close the tool from the MATLAB
command line.

Using the HDF Import Tool Subsetting Options
When you select a data set, the importing and subsetting pane displays the
subsetting options available for that type of data set. The following sections
provide information about these subsetting options for all supported data
set types. For general information about the HDF Import tool, see “Using
the HDF Import Tool” on page 7-45.

• “HDF Scientific Data Sets (SD)” on page 7-51

• “HDF Vdata” on page 7-51

• “HDF-EOS Grid Data” on page 7-53

• “HDF-EOS Point Data” on page 7-58

• “HDF-EOS Swath Data” on page 7-58

• “HDF Raster Image Data” on page 7-62

Note To use these data subsetting options effectively, you must understand
the HDF and HDF-EOS data formats. Therefore, use this documentation
in conjunction with the HDF documentation (www.hdfgroup.org) and the
HDF-EOS documentation (www.hdfeos.org).

7-50

http://www.hdfgroup.org
http://www.hdfeos.org

Hierarchical Data Format (HDF4) Files

HDF Scientific Data Sets (SD)
The HDF scientific data set (SD) is a group of data structures used to store
and describe multidimensional arrays of scientific data. Using the HDF
Import Tool subsetting parameters, you can import a subset of an HDF
scientific data set by specifying the location, range, and number of values to
be read along each dimension.

"
��������
$���-�����

2�-������

The subsetting parameters are:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

HDF Vdata
HDF Vdata data sets provide a framework for storing customized tables.
A Vdata table consists of a collection of records whose values are stored in

7-51

7 Scientific Data File Formats

fixed-length fields. All records have the same structure and all values in
each field have the same data type. Each field is identified by a name. The
following figure illustrates a Vdata table.

��0 2�!$�

�

>�-$

�

	 �	 �

� � '

�

�������-��

.������

������

You can import a subset of an HDF Vdata data set in the following ways:

• Specifying the name of the field that you want to import

• Specifying the range of records that you want to import

The following figure shows how you specify these subsetting parameters for
Vdata.

"$����#�����������
����

"$����#�!�������
�������������

"$����#���!�-��#
���������������

7-52

Hierarchical Data Format (HDF4) Files

HDF-EOS Grid Data
In HDF-EOS Grid data, a rectilinear grid overlays a map. The map uses a
known map projection. The HDF Import Tool supports the following mutually
exclusive subsetting options for Grid data:

• “Direct Index” on page 7-53

• “Geographic Box” on page 7-54

• “Interpolation” on page 7-55

• “Pixels” on page 7-56

• “Tile” on page 7-56

• “Time” on page 7-56

• “User-Defined” on page 7-57

To access these options, click the Subsetting method menu in the importing
and subsetting pane.

����4��������
�����$�����

Direct Index. You can import a subset of an HDF-EOS Grid data set by
specifying the location, range, and number of values to be read along each
dimension.

7-53

7 Scientific Data File Formats

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

Geographic Box. You can import a subset of an HDF-EOS Grid data set
by specifying the rectangular area of the grid that you are interested in. To
define this rectangular area, you must specify two points, using longitude and
latitude in decimal degrees. These points are two corners of the rectangular
area. Typically, Corner 1 is the upper-left corner of the box, and Corner 2
is the lower-right corner of the box.

7-54

Hierarchical Data Format (HDF4) Files

Optionally, you can further define the subset of data you are interested in
by using Time parameters (see “Time” on page 7-56) or by specifying other
User-Defined subsetting parameters (see “User-Defined” on page 7-57).

Interpolation. Interpolation is the process of estimating a pixel value at a
location in between other pixels. In interpolation, the value of a particular
pixel is determined by computing the weighted average of some set of pixels
in the vicinity of the pixel.

You define the region used for bilinear interpolation by specifying two points
that are corners of the interpolation area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

7-55

7 Scientific Data File Formats

Pixels. You can import a subset of the pixels in a Grid data set by defining
a rectangular area over the grid. You define the region used for bilinear
interpolation by specifying two points that are corners of the interpolation
area:

• Corner 1 – Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box

Tile. In HDF-EOS Grid data, a rectilinear grid overlays a map. Each
rectangle defined by the horizontal and vertical lines of the grid is referred to
as a tile. If the HDF-EOS Grid data is stored as tiles, you can import a subset
of the data by specifying the coordinates of the tile you are interested in.
Tile coordinates are 1-based, with the upper-left corner of a two-dimensional
data set identified as 1,1. In a three-dimensional data set, this tile would be
referenced as 1,1,1.

Time. You can import a subset of the Grid data set by specifying a time
period. You must specify both the start time and the stop time (the endpoint
of the time span). The units (hours, minutes, seconds) used to specify the time
are defined by the data set.

7-56

Hierarchical Data Format (HDF4) Files

Along with these time parameters, you can optionally further define the
subset of data to import by supplying user-defined parameters.

User-Defined. You can import a subset of the Grid data set by specifying
user-defined subsetting parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

7-57

7 Scientific Data File Formats

HDF-EOS Point Data
HDF-EOS Point data sets are tables. You can import a subset of an HDF-EOS
Point data set by specifying field names and level. Optionally, you can refine
the subsetting by specifying the range of records you want to import, by
defining a rectangular area, or by specifying a time period. For information
about specifying a rectangular area, see “Geographic Box” on page 7-54. For
information about subsetting by time, see “Time” on page 7-56.

HDF-EOS Swath Data
HDF-EOS Swath data is data that is produced by a satellite as it traces a path
over the earth. This path is called its ground track. The sensor aboard the
satellite takes a series of scans perpendicular to the ground track. Swath data
can also include a vertical measure as a third dimension. For example, this
vertical dimension can represent the height above the Earth of the sensor.

The HDF Import Tool supports the following mutually exclusive subsetting
options for Swath data:

• “Direct Index” on page 7-59

• “Geographic Box” on page 7-60

• “Time” on page 7-61

• “User-Defined” on page 7-61

To access these options, click the Subsetting method menu in the
Importing and Subsetting pane.

7-58

Hierarchical Data Format (HDF4) Files

����4��������
����������
��������
�$����

Direct Index. You can import a subset of an HDF-EOS Swath data set by
specifying the location, range, and number of values to be read along each
dimension.

Each row represents a dimension in the data set and each column represents
these subsetting parameters:

• Start — Specifies the position on the dimension to begin reading. The
default value is 1, which starts reading at the first element of each
dimension. The values specified must not exceed the size of the relevant
dimension of the data set.

• Increment — Specifies the interval between the values to read. The
default value is 1, which reads every element of the data set.

• Length — Specifies how much data to read along each dimension. The
default value is the length of the dimension, which causes all the data to
be read.

7-59

7 Scientific Data File Formats

Geographic Box. You can import a subset of an HDF-EOS Swath data
set by specifying the rectangular area of the grid that you are interested in
and by specifying the selection Mode.

You define the rectangular area by specifying two points that specify two
corners of the box:

• Corner 1 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 1 is the upper-left corner of the box.

• Corner 2 — Specify longitude and latitude values in decimal degrees.
Typically, Corner 2 is the lower-right corner of the box.

You specify the selection mode by choosing the type of Cross Track
Inclusion and the Geolocation mode. The Cross Track Inclusion value
determines how much of the area of the geographic box that you define must
fall within the boundaries of the swath.

Select from these values:

• AnyPoint — Any part of the box overlaps with the swath.

• Midpoint— At least half of the box overlaps with the swath.

7-60

Hierarchical Data Format (HDF4) Files

• Endpoint— All of the area defined by the box overlaps with the swath.

The Geolocation Mode value specifies whether geolocation fields and data
must be in the same swath.

Select from these values:

• Internal— Geolocation fields and data fields must be in the same swath.

• External— Geolocation fields and data fields can be in different swaths.

Time. You can optionally also subset swath data by specifying a time period.
The units used (hours, minutes, seconds) to specify the time are defined by
the data set

User-Defined. You can optionally also subset a swath data set by specifying
user-defined parameters.

When specifying user-defined parameters, you must first specify whether you
are subsetting along a dimension or by field. Select the dimension or field by
name using the Dimension or Field Name menu. Dimension names are
prefixed with the characters DIM:.

7-61

7 Scientific Data File Formats

Once you specify the dimension or field, you use Min and Max to specify
the range of values that you want to import. For dimensions, Min and Max
represent a range of elements. For fields, Min and Max represent a range
of values.

HDF Raster Image Data
For 8-bit HDF raster image data, you can specify the colormap.

Using the MATLAB HDF4 High-Level Functions
To import data from an HDF or HDF-EOS file, you can use the MATLAB
HDF4 high-level function hdfread. The hdfread function provides a
programmatic way to import data from an HDF4 or HDF-EOS file that still
hides many of the details that you need to know if you use the low-level HDF
functions, described in “Using the HDF4 Low-Level Functions” on page 7-65.
You can also import HDF4 data using an interactive GUI, described in “Using
the HDF Import Tool” on page 7-45.

This section describes these high-level MATLAB HDF functions, including

• “Using hdfinfo to Get Information About an HDF4 File” on page 7-62

• “Using hdfread to Import Data from an HDF4 File” on page 7-63

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level
functions.

Using hdfinfo to Get Information About an HDF4 File
To get information about the contents of an HDF4 file, use the hdfinfo
function. The hdfinfo function returns a structure that contains information
about the file and the data in the file.

Note You can also use the HDF Import Tool to get information about the
contents of an HDF4 file. See “Using the HDF Import Tool” on page 7-45
for more information.

7-62

Hierarchical Data Format (HDF4) Files

This example returns information about a sample HDF4 file included with
MATLAB:

info = hdfinfo('example.hdf')

info =

Filename: 'example.hdf'
SDS: [1x1 struct]

Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.

Using hdfread to Import Data from an HDF4 File
To use thehdfread function, you must specify the data set that you want to
read. You can specify the filename and the data set name as arguments, or
you can specify a structure returned by the hdfinfo function that contains
this information. The following example shows both methods. For information
about how to import a subset of the data in a data set, see “Reading a Subset
of the Data in a Data Set” on page 7-65.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo
function.

info = hdfinfo('example.hdf')

info =

Filename: 'example.hdf'
SDS: [1x1 struct]

Vdata: [1x1 struct]

To determine the names and other information about the data sets in
the file, look at the contents of the SDS field. The Name field in the SDS
structure gives the name of the data set.

dsets = info.SDS

dsets =

7-63

7 Scientific Data File Formats

Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 0

2 Read the data set from the HDF4 file, using the hdfread function. Specify
the name of the data set as a parameter to the function. Note that the data
set name is case sensitive. This example returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS');

dset =

3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12
9 10 11 12 13

10 11 12 13 14
11 12 13 14 15
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by
hdfinfo that contains this information. For example, to read a scientific
data set, use the SDS field.

dset = hdfread(info.SDS);

7-64

Hierarchical Data Format (HDF4) Files

Reading a Subset of the Data in a Data Set. To read a subset of a data
set, you can use the optional 'index' parameter. The value of the index
parameter is a cell array of three vectors that specify the location in the data
set to start reading, the skip interval (e.g., read every other data item), and
the amount of data to read (e.g., the length along each dimension). In HDF4
terminology, these parameters are called the start, stride, and edge values.

For example, this code

• Starts reading data at the third row, third column ([3 3]).

• Reads every element in the array ([]).

• Reads 10 rows and 2 columns ([10 2]).

subset = hdfread('Example.hdf','Example SDS',...
'Index',{[3 3],[],[10 2]})

subset =

7 8
8 9
9 10

10 11
11 12
12 13
13 14
14 15
15 16
16 17

Using the HDF4 Low-Level Functions
This section describes how to use MATLAB functions to access the HDF4
Application Programming Interfaces (APIs). These APIs are libraries of C
routines that you can use to import data from an HDF4 file or export data
from the MATLAB workspace into an HDF4 file. To import or export data, you
must use the functions in the HDF4 API associated with the particular HDF4
data type you are working with. Each API has a particular programming
model, that is, a prescribed way to use the routines to write data sets to
the file. To illustrate this concept, this section describes the programming

7-65

7 Scientific Data File Formats

model of one particular HDF4 API: the HDF4 Scientific Data (SD) API. For a
complete list of the HDF4 APIs supported by MATLAB and the functions you
use to access each one, see the hdf reference page.

Note This section does not attempt to describe all HDF4 features and
routines. To use the MATLAB HDF4 functions effectively, you must refer to
the official NCSA documentation at the HDF Web site (www.hdfgroup.org).

Topics covered include

• “Understanding the HDF4 to MATLAB Syntax Mapping” on page 7-66

• “Example: Importing Data Using the HDF4 SD API Functions” on page
7-67

• “Example: Exporting Data Using the HDF4 SD API Functions” on page
7-73

• “Using the MATLAB HDF4 Utility API” on page 7-80

Understanding the HDF4 to MATLAB Syntax Mapping
Each HDF4 API includes many individual routines that you use to read
data from files, write data to files, and perform other related functions. For
example, the HDF4 Scientific Data (SD) API includes separate C routines to
open (SDopen), close (SDend), and read data (SDreaddata).

Instead of supporting each routine in the HDF4 APIs, MATLAB provides a
single function that serves as a gateway to all the routines in a particular
HDF4 API. For example, the HDF Scientific Data (SD) API includes the C
routine SDend to close an HDF4 file:

status = SDend(sd_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with
the SD API, hdfsd. You must specify the name of the routine, minus the API
acronym, as the first argument and pass any other required arguments to the
routine in the order they are expected. For example,

status = hdfsd('end',sd_id); % MATLAB code

7-66

http://www.hdfgroup.org

Hierarchical Data Format (HDF4) Files

Handling HDF4 Routines with Output Arguments. Some HDF4 API
routines use output arguments to return data. Because MATLAB does not
support output arguments, you must specify these arguments as return
values.

For example, the SDfileinfo routine returns data about an HDF4 file in two
output arguments, ndatasets and nglobal_atts. Here is the C code:

status = SDfileinfo(sd_id, ndatasets, nglobal_atts);

To call this routine from MATLAB, change the output arguments into return
values:

[ndatasets, nglobal_atts, status] = hdfsd('fileinfo',sd_id);

Specify the return values in the same order as they appear as output
arguments. The function status return value is always specified as the last
return value.

Example: Importing Data Using the HDF4 SD API Functions
To illustrate using HDF4 API routines in MATLAB, the following sections
provide a step-by-step example of how to import HDF4 Scientific Data (SD)
into the MATLAB workspace.

• “Step 1: Opening the HDF4 File” on page 7-68

• “Step 2: Retrieving Information About the HDF4 File” on page 7-68

• “Step 3: Retrieving Attributes from an HDF4 File (Optional)” on page 7-69

• “Step 4: Selecting the Data Sets to Import” on page 7-70

• “Step 5: Getting Information About a Data Set” on page 7-70

• “Step 6: Reading Data from the HDF4 File” on page 7-71

• “Step 7: Closing the HDF4 Data Set” on page 7-72

• “Step 8: Closing the HDF4 File” on page 7-73

7-67

7 Scientific Data File Formats

Note The following sections, when referring to specific routines in the HDF4
SD API, use the C library name rather than the MATLAB function name. The
MATLAB syntax is used in all examples.

Step 1: Opening the HDF4 File. To import an HDF4 SD data set, you must
first open the file using the SD API routine SDstart. (In HDF4 terminology,
the numeric arrays stored in HDF4 files are called data sets.) In MATLAB,
you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, start in this case.

• Name of the file you want to open.

• Mode in which you want to open it. The following table lists the file access
modes supported by the SDstart routine. In MATLAB, you specify these
modes as text strings. You can specify the full HDF4 mode name or one of
the abbreviated forms listed in the table.

HDF4 File Creation
Mode HDF4 Mode Name MATLAB String

Create a new file 'DFACC_CREATE' 'create'

Read access 'DFACC_RDONLY' 'read' or 'rdonly'

Read and write access 'DFACC_RDWR' 'rdwr' or 'write'

For example, this code opens the file mydata.hdf for read access:

sd_id = hdfsd('start','mydata.hdf','read');

If SDstart can find and open the file specified, it returns an HDF4 SD file
identifier, named sd_id in the example. Otherwise, it returns -1.

Step 2: Retrieving Information About the HDF4 File. To get information
about an HDF4 file, you must use the SD API routine SDfileinfo. This
function returns the number of data sets in the file and the number of global
attributes in the file, if any. (For more information about global attributes, see
“Example: Exporting Data Using the HDF4 SD API Functions” on page 7-73.)
In MATLAB, you use the hdfsd function, specifying the following arguments:

7-68

Hierarchical Data Format (HDF4) Files

• Name of the SD API routine, fileinfo in this case

• SD file identifier, sd_id, returned by SDstart

In this example, the HDF4 file contains three data sets and one global
attribute.

[ndatasets, nglobal_atts, stat] = hdfsd('fileinfo',sd_id)

ndatasets =
3

nglobal_atts =
1

status =
0

Step 3: Retrieving Attributes from an HDF4 File (Optional). HDF4
files can optionally include information, called attributes, that describes the
data the file contains. Attributes associated with an entire HDF4 file are
called global attributes. Attributes associated with a data set are called local
attributes. (You can also associate attributes with files or dimensions. For
more information, see “Step 4: Writing Metadata to an HDF4 File” on page
7-78.)

To retrieve attributes from an HDF4 file, use the HDF4 API routine
SDreadattr. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, readattr in this case.

• File identifier (sd_id) returned by SDstart, for global attributes, or the
data set identifier for local attributes. (See “Step 4: Selecting the Data Sets
to Import” on page 7-70 to learn how to get a data set identifier.)

• Index identifying the attribute you want to view. HDF4 uses zero-based
indexing. If you know the name of an attribute but not its index, use the
SDfindattr routine to determine the index value associated with the
attribute.

For example, this code returns the contents of the first global attribute, which
is the character string my global attribute:

7-69

7 Scientific Data File Formats

attr_idx = 0;
[attr, status] = hdfsd('readattr', sd_id, attr_idx);

attr =
my global attribute

Step 4: Selecting the Data Sets to Import. To select a data set, use
the SD API routine SDselect. In MATLAB, you use the hdfsd function,
specifying as arguments:

• Name of the SD API routine, select in this case

• HDF4 SD file identifier (sd_id) returned by SDstart

If SDselect finds the specified data set in the file, it returns an HDF4 SD
data set identifier, called sds_id in the example. If it cannot find the data
set, it returns -1.

Note Do not confuse HDF4 SD file identifiers, named sd_id in the examples,
with HDF4 SD data set identifiers, named sds_id in the examples.

sds_id = hdfsd('select',sd_id,1)

Step 5: Getting Information About a Data Set. To read a data set, you
must get information about the data set, such as its name, size, and data
type. In the HDF4 SD API, you use the SDgetinfo routine to gather this
information. In MATLAB, use the hdfsd function, specifying as arguments:

• Name of the SD API routine, getinfo in this case

• HDF4 SD data set identifier (sds_id) returned by SDselect

This code retrieves information about the data set identified by sds_id:

[dsname, dsndims, dsdims, dstype, dsatts, stat] =
hdfsd('getinfo',sds_id)

dsname =
A

7-70

Hierarchical Data Format (HDF4) Files

dsndims =
2

dsdims =
5 3

dstype =
double

dsatts =
0

stat =
0

Step 6: Reading Data from the HDF4 File. To read data from an HDF4
file, you must use the SDreaddata routine. In MATLAB, use the hdfsd
function, specifying as arguments:

• Name of the SD API function, readdata in this case.

• HDF4 SD data set identifier (sds_id) returned by SDselect.

• Location in the data set where you want to start reading data, specified as a
vector of index values, called the start vector. To read from the beginning of
a data set, specify zero for each element of the start vector. Use SDgetinfo
to determine the dimensions of the data set.

• Number of elements along each dimension to skip between each read
operation, specified as a vector of scalar values, called the stride vector. To
read every element of a data set, specify 1 as the value for each element of
the vector or specify an empty array ([]).

• Total number of elements to read along each dimension, specified as a
vector of scalar values, called the edges vector. To read every element of a
data set, set each element of the edges vector to the size of each dimension
of the data set. Use SDgetinfo to determine these sizes.

7-71

7 Scientific Data File Formats

Note SDgetinfo returns dimension values in row-major order, the ordering
used by HDF4. Because MATLAB stores data in column-major order, you
must specify the dimensions in column-major order, that is, [columns,rows].
In addition, you must use zero-based indexing in these arguments.

For example, to read the entire contents of a data set, use this code:

[ds_name, ds_ndims, ds_dims, ds_type, ds_atts, stat] =

hdfsd('getinfo',sds_id);

ds_start = zeros(1,ds_ndims); % Creates the vector [0 0]

ds_stride = [];

ds_edges = ds_dims;

[ds_data, status] =

hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

disp(ds_data)

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

To read less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start reading data and how much data you want
to read. For example, this code reads the entire second row of the sample
data set:

ds_start = [0 1]; % Start reading at the first column, second row

ds_stride = []; % Read each element

ds_edges = [5 1]; % Read a 1-by-5 vector of data

[ds_data, status] =

hdfsd('readdata',sds_id,ds_start,ds_stride,ds_edges);

Step 7: Closing the HDF4 Data Set. After writing data to a data set in an
HDF4 file, you must close access to the data set. In the HDF4 SD API, you
use the SDendaccess routine to close a data set. In MATLAB, use the hdfsd
function, specifying as arguments:

7-72

Hierarchical Data Format (HDF4) Files

• Name of the SD API routine, endaccess in this case

• HDF4 SD data set identifier (sds_id) returned by SDselect

For example, this code closes the data set:

stat = hdfsd('endaccess',sds_id);

You must close access to all the data sets in an HDF4 file before closing it.

Step 8: Closing the HDF4 File. After writing data to a data set and closing
the data set, you must also close the HDF4 file. In the HDF4 SD API, you
use the SDend routine. In MATLAB, use the hdfsd function, specifying as
arguments:

• Name of the SD API routine, end in this case

• HDF4 SD file identifier (sd_id) returned by SDstart

For example, this code closes the data set:

stat = hdfsd('end',sd_id);

Example: Exporting Data Using the HDF4 SD API Functions
The following sections provide a step-by-step example of how to export data
from the MATLAB workspace to an HDF4 file using Scientific Data (SD)
API functions.

• “Step 1: Creating an HDF4 File” on page 7-74

• “Step 2: Creating an HDF4 Data Set” on page 7-74

• “Step 3: Writing MATLAB Data to an HDF4 File” on page 7-76

• “Step 4: Writing Metadata to an HDF4 File” on page 7-78

• “Step 5: Closing HDF4 Data Sets” on page 7-79

• “Step 6: Closing an HDF4 File” on page 7-80

7-73

7 Scientific Data File Formats

Step 1: Creating an HDF4 File. To export MATLAB data in HDF4 format,
you must first create an HDF4 file, or open an existing one. In the HDF4
SD API, you use the SDstart routine. In MATLAB, use the hdfsd function,
specifying start as the first argument. As other arguments, specify

• A text string specifying the name you want to assign to the HDF4 file (or
the name of an existing HDF4 file)

• A text string specifying the HDF4 SD interface file access mode

For example, this code creates an HDF4 file named mydata.hdf:

sd_id = hdfsd('start','mydata.hdf','DFACC_CREATE');

When you specify the DFACC_CREATE access mode, SDstart creates the file
and initializes the HDF4 SD multifile interface, returning an HDF4 SD file
identifier, named sd_id in the example.

If you specify DFACC_CREATE mode and the file already exists, SDstart fails,
returning -1. To open an existing HDF4 file, you must use HDF4 read or
write modes. For information about using SDstart in these modes, see “Step
1: Opening the HDF4 File” on page 7-68.

Step 2: Creating an HDF4 Data Set. After creating the HDF4 file, or
opening an existing one, you must create a data set in the file for each
MATLAB array you want to export. If you are writing data to an existing data
set, you can skip ahead to the next step.

In the HDF4 SD API, you use the SDcreate routine to create data sets. In
MATLAB, you use the hdfsd function, specifying as arguments:

• Name of the SD API routine, 'create' in this case

• Valid HDF4 SD file identifier, sd_id, returned by SDstart

• Name you want assigned to the data set

• Data type of the data set.

• Number of dimensions in the data set. This is called the rank of the data
set in HDF4 terminology.

• Size of each dimension, specified as a vector

7-74

Hierarchical Data Format (HDF4) Files

Once you create a data set, you cannot change its name, data type, or
dimensions.

For example, to create a data set in which you can write the following
MATLAB 3-by-5 array of doubles,

A = [1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15];

you could call hdfsd, specifying as arguments 'create' and a valid HDF
file identifier, sd_id. In addition, set the values of the other arguments as
in this code fragment:

ds_name = 'A';
ds_type = 'double';
ds_rank = ndims(A);
ds_dims = fliplr(size(A));

sds_id = hdfsd('create',sd_id,ds_name,ds_type,ds_rank,ds_dims);

If SDcreate can successfully create the data set, it returns an HDF4 SD data
set identifier, (sds_id). Otherwise, SDcreate returns -1.

In this example, note the following:

• The data type you specify in ds_type must match the data type of the
MATLAB array that you want to write to the data set. In the example, the
array is of class double so the value of ds_type is set to 'double'. If you
wanted to use another data type, such as uint8, convert the MATLAB
array to use this data type,

A = uint8([1 2 3 4 5 ; 6 7 8 9 10 ; 11 12 13 14 15]);

and specify the name of the MATLAB data type, uint8 in this case, in the
ds_type argument.

ds_type = 'uint8';

• The code fragment reverses the order of the values in the dimensions
argument (ds_dims). This processing is necessary because the MATLAB
size function returns the dimensions in column-major order and HDF4
expects to receive dimensions in row-major order.

7-75

7 Scientific Data File Formats

Step 3: Writing MATLAB Data to an HDF4 File. After creating an
HDF4 file and creating a data set in the file, you can write data to the entire
data set or just a portion of the data set. In the HDF4 SD API, you use the
SDwritedata routine. In MATLAB, use the hdfsd function, specifying as
arguments:

• Name of the SD API routine, 'writedata' in this case

• Valid HDF4 SD data set identifier, sds_id, returned by SDcreate

• Location in the data set where you want to start writing data, called the
start vector in HDF4 terminology

• Number of elements along each dimension to skip between each write
operation, called the stride vector in HDF4 terminology

• Total number of elements to write along each dimension, called the edges
vector in HDF4 terminology

• MATLAB array to be written

Note You must specify the values of the start, stride, and edges arguments
in row-major order, rather than the column-major order used in MATLAB.
Note how the example uses fliplr to reverse the order of the dimensions in
the vector returned by the size function before assigning it as the value of
the edges argument.

The values you assign to these arguments depend on the MATLAB array
you want to export. For example, the following code fragment writes this
MATLAB 3-by-5 array of doubles,

A = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15];

into an HDF4 file:

ds_start = zeros(1:ndims(A)); % Start at the beginning
ds_stride = []; % Write every element.
ds_edges = fliplr(size(A)); % Reverse the dimensions.

stat = hdfsd('writedata',sds_id,...
ds_start, ds_stride, ds_edges, A);

7-76

Hierarchical Data Format (HDF4) Files

If it can write the data to the data set, SDwritedata returns 0; otherwise,
it returns -1.

Note SDwritedata queues write operations. To ensure that these queued
write operations are executed, you must close the file, using the SDend routine.
See “Step 6: Closing an HDF4 File” on page 7-80 for more information. As a
convenience, MATLAB provides a function, MLcloseall, that you can use to
close all open data sets and file identifiers with a single call. See “Using the
MATLAB HDF4 Utility API” on page 7-80 for more information.

To write less than the entire data set, use the start, stride, and edges vectors
to specify where you want to start writing data and how much data you want
to write.

For example, the following code fragment uses SDwritedata to replace the
values of the entire second row of the sample data set:

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

with the vector B:

B = [9 9 9 9 9];

In the example, the start vector specifies that you want to start the write
operation in the first column of the second row. Note how HDF4 uses
zero-based indexing and specifies the column dimension first. In MATLAB,
you would specify this location as (2,1). The edges argument specifies the
dimensions of the data to be written. Note that the size of the array of data
to be written must match the edge specification.

ds_start = [0 1]; % Start writing at the first column, second row.

ds_stride = []; % Write every element.

ds_edges = [5 1]; % Each row is a 1-by-5 vector.

stat = hdfsd('writedata',sds_id,ds_start,ds_stride,ds_edges,B);

7-77

7 Scientific Data File Formats

Step 4: Writing Metadata to an HDF4 File. You can optionally include
information in an HDF4 file, called attributes, that describes the file and its
contents. Using the HDF4 SD API, you can associate attributes with three
types of HDF4 objects:

• An entire HDF4 file — File attributes, also called global attributes,
generally contain information pertinent to all the data sets in the file.

• A data set in an HDF4 file — Data set attributes, also called local
attributes, describe individual data sets.

• A dimension of a data set — Dimension attributes provide information
about one particular dimension of a data set.

To create an attribute in the HDF4 SD API, use the SDsetattr routine. In
MATLAB, use the hdfsd function, specifying 'setattr' as the first argument.
As other arguments, specify

• A valid HDF4 SD identifier associated with the object. This value can be
a file identifier (sd_id), a data set identifier (sds_id), or a dimension
identifier (dim_id).

• A text string that defines the name of the attribute.

• The attribute value.

For example, this code creates a global attribute, named my_global_attr,
and associates it with the HDF4 file identified by sd_id:

status = hdfsd('setattr',sd_id,'my_global_attr','my_attr_val');

Note In the NCSA documentation, the SDsetattr routine has two additional
arguments: data type and the number of values in the attribute. When calling
this routine from MATLAB, you do not have to include these arguments.
The MATLAB HDF4 function can determine the data type and size of the
attribute from the value you specify.

The SD interface supports predefined attributes that have reserved names
and, in some cases, data types. Predefined attributes are identical to
user-defined attributes except that the HDF4 SD API has already defined

7-78

Hierarchical Data Format (HDF4) Files

their names and data types. For example, the HDF4 SD API defines an
attribute, named cordsys, in which you can specify the coordinate system
used by the data set. Possible values of this attribute include the text strings
'cartesian', 'polar', and 'spherical'.

Predefined attributes can be useful because they establish conventions that
applications can depend on. The HDF4 SD API supports predefined attributes
for data sets and dimensions only; there are no predefined attributes for files.
For a complete list of the predefined attributes, see the NCSA documentation.

In the HDF4 SD API, you create predefined attributes the same way you
create user-defined attributes, using the SDsetattr routine. In MATLAB, use
the hdfsd function, specifying setattr as the first argument:

attr_name = 'cordsys';
attr_value = 'polar';

status = hdfsd('setattr',sds_id,attr_name,attr_value);

The HDF4 SD API also includes specialized functions for writing and
reading the predefined attributes. These specialized functions, such as
SDsetdatastrs, are sometimes easier to use, especially when you are reading
or writing multiple related predefined attributes. You must use specialized
functions to read or write the predefined dimension attributes.

You can associate multiple attributes with a single HDF4 object. HDF4
maintains an attribute index for each object. The attribute index is
zero-based. The first attribute has index value 0, the second has index value
1, and so on. You access an attribute by its index value.

Each attribute has the format name=value, where name (called label in
HDF4 terminology) is a text string up to 256 characters in length and value
contains one or more entries of the same data type. A single attribute can
have multiple values.

Step 5: Closing HDF4 Data Sets. After writing data to a data set in an
HDF4 file, you must close access to the data set. In the HDF4 SD API, you
use the SDendaccess routine to close a data set. In MATLAB, use the hdfsd
function, specifying endaccess as the first argument. As the only other
argument, specify a valid HDF4 SD data set identifier, sds_id in this example:

7-79

7 Scientific Data File Formats

stat = hdfsd('endaccess',sds_id);

Step 6: Closing an HDF4 File. After writing data to a data set and closing
the data set, you must also close the HDF4 file. In the HDF4 SD API, you
use the SDend routine. In MATLAB, use the hdfsd function, specifying end
as the first argument. As the only other argument, specify a valid HDF4 SD
file identifier, sd_id in this example:

stat = hdfsd('end',sd_id);

You must close access to all the data sets in an HDF4 file before closing it.

Note Closing an HDF4 file executes all the write operations that have been
queued using SDwritedata. As a convenience, the MATLAB HDF Utility
API provides a function that can close all open data set and file identifiers
with a single call. See “Using the MATLAB HDF4 Utility API” on page 7-80
for more information.

Using the MATLAB HDF4 Utility API
In addition to the standard HDF4 APIs, listed in the hdfreference page,
MATLAB supports utility functions that are designed to make it easier to use
HDF4 in the MATLAB environment.

For example, using the gateway function to the MATLAB HDF4 utility API,
hdfml, and specifying the name of the listinfo routine as an argument, you
can view all the currently open HDF4 identifiers. MATLAB updates this list
whenever HDF identifiers are created or closed. In the following example
only two identifiers are open.

hdfml('listinfo')
No open RI identifiers
No open GR identifiers
No open grid identifiers
No open grid file identifiers
No open annotation identifiers
No open AN identifiers
Open scientific dataset identifiers:
262144

7-80

Hierarchical Data Format (HDF4) Files

Open scientific data file identifiers:
393216

No open Vdata identifiers
No open Vgroup identifiers
No open Vfile identifiers
No open point identifiers
No open point file identifiers
No open swath identifiers
No open swath file identifiers
No open access identifiers
No open file identifiers

Closing All Open HDF4 Identifiers. To close all the currently open
HDF4 identifiers in a single call, use the gateway function to the MATLAB
HDF4 utility API, hdfml, specifying the name of the closeall routine as
an argument. The following example closes all the currently open HDF4
identifiers.

hdfml('closeall')

7-81

7 Scientific Data File Formats

7-82

8

Error Handling

• “Error Reporting in a MATLAB Application” on page 8-2

• “Capturing Information About the Error” on page 8-5

• “Throwing an Exception” on page 8-16

• “Responding to an Exception” on page 8-17

• “Warnings” on page 8-22

• “Warning Control” on page 8-24

• “Debugging Errors and Warnings” on page 8-34

8 Error Handling

Error Reporting in a MATLAB Application

In this section...

“Overview” on page 8-2
“Getting an Exception at the Command Line” on page 8-2
“Getting an Exception in Your Program Code” on page 8-3
“Generating a New Exception” on page 8-4

Overview
No matter how carefully you plan and test the programs you write, they
may not always run as smoothly as expected when executed under different
conditions. It is always a good idea to include error checking in programs to
ensure reliable operation under all conditions.

In the MATLAB software, you can decide how your programs respond
to different types of errors. You may want to prompt the user for more
input, display extended error or warning information, or perhaps repeat a
calculation using default values. The error-handling capabilities in MATLAB
help your programs check for particular error conditions and execute the
appropriate code depending on the situation.

When MATLAB detects a severe fault in the command or program it is
running, it collects information about what was happening at the time of the
error, displays a message to help the user understand what went wrong, and
terminates the command or program. This is called throwing an exception.
You can get an exception while entering commands at the MATLAB command
prompt or while executing your program code.

Getting an Exception at the Command Line
If you get an exception at the MATLAB prompt, you have several options on
how to deal with it as described below.

Determine the Fault from the Error Message
Evaluate the error message MATLAB has displayed. Most error messages
attempt to explain at least the immediate cause of the program failure. There

8-2

Error Reporting in a MATLAB® Application

is often sufficient information to determine the cause and what you need to
do to remedy the situation.

Review the Failing Code
If the function in which the error occurred is implemented as an M-file, the
error message should include a line that looks something like this:

surf

The underlined text to the right names the function that threw the error
(surf, in this case) and shows the failing line number within that function’s
M-file. Click the underlined text; MATLAB opens the M-file and positions
the cursor at the location in the file where the error originated. You may be
able to determine the cause of the error by examining this line and the code
that precedes it.

Step Through the Code in the Debugger
You can use the MATLAB Debugger to step through the failing code. Click the
underlined error text to open the M-file in the MATLAB Editor at or near the
point of the error. Next, click the hyphen at the beginning of that line to set a
breakpoint at that location. When you rerun your program, MATLAB pauses
execution at the breakpoint and enables you to step through the program code.
The command dbstop on error is also helpful in finding the point of error.

See the documentation on “Editing and Debugging M-Files” for more
information.

Getting an Exception in Your Program Code
When you are writing your own program in an M-file, you can catch exceptions
and attempt to handle or resolve them instead of allowing your program
to terminate. When you catch an exception, you interrupt the normal
termination process and enter a block of code that deals with the faulty
situation. This block of code is called a catch block.

8-3

8 Error Handling

Some of the things you might want to do in the catch block are:

• Examine information that has been captured about the error.

• Gather further information to report to the user.

• Try to accomplish the task at hand in some other way.

• Clean up any unwanted side effects of the error.

When you reach the end of the catch block, you can either continue executing
the program, if possible, or terminate it.

The documentation on “Capturing Information About the Error” on page
8-5 describes how to acquire information about what caused the error, and
“Responding to an Exception” on page 8-17 presents some ideas on how to
respond to it.

Generating a New Exception
When your program code detects a condition that will either make the
program fail or yield unacceptable results, it should throw an exception. This
procedure

• Saves information about what went wrong and what code was executing at
the time of the error.

• Gathers any other pertinent information about the error.

• Instructs MATLAB to throw the exception.

The documentation on “Capturing Information About the Error” on page 8-5
describes how to use an MException object to capture information about the
error, and “Throwing an Exception” on page 8-16 explains how to initiate
the exception process.

8-4

Capturing Information About the Error

Capturing Information About the Error

In this section...

“Overview” on page 8-5
“The MException Class” on page 8-5
“Properties of the MException Class” on page 8-7
“Methods of the MException Class” on page 8-14

Overview
When the MATLAB software throws an exception, it captures information
about what caused the error in a data structure called an MException object.
This object is an instance of the MATLAB MException class. You can obtain
access to the MException object by catching the exception before your program
aborts and accessing the object constructed for this particular error via the
catch command. When throwing an exception in response to an error in your
own M-file code, you will have to create a new MException object and store
information about the error in that object.

This section describes the MException class and objects constructed from
that class:

Information on how to use this class is presented in later sections on
“Responding to an Exception” on page 8-17 and “Throwing an Exception”
on page 8-16.

The MException Class
The figure shown below illustrates one possible configuration of an object of
the MException class. The object has four properties: identifier, message,
stack, and cause. Each of these properties is implemented as a field of the
structure that represents the MException object. The stack field is an N-by-1
array of additional structures, each one identifying an M-file, function, and
line number from the call stack. The cause field is an M-by-1 cell array of
MException objects, each representing an exception that is related to the
current one.

8-5

8 Error Handling

See “Properties of the MException Class” on page 8-7 for a full description of
these properties.

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

5:0��$����
����;�<���

Object Constructor
Any code that detects an error and throws an exception must also construct
an MException object in which to record and transfer information about the
error. The syntax of the MException constructor is

ME = MException(identifier, message)

8-6

Capturing Information About the Error

where identifier is a MATLAB message identifier of the form

component:mnemonic

that is enclosed in single quotes, and message is a text string, also enclosed
in single quotes, that describes the error. The output ME is the resulting
MException object.

If you are responding to an exception rather than throwing one, you do
not have to construct an MException object. The object has already been
constructed and populated by the code that originally detected the error.

Properties of the MException Class
The MException class has four properties. Each of these properties is
implemented as a field of the structure that represents the MException object.
Each of these properties is described in the sections below and referenced in
the sections on “Responding to an Exception” on page 8-17 and “Throwing an
Exception” on page 8-16. All are read-only; their values cannot be changed.

The MException properties are:

• identifier

• message

• stack

• cause

Repeating the surf example shown above, but this time catching the
exception, you can see the four properties of the MException object structure.
(This example uses try-catch in an atypical fashion. See the section on “The
try-catch Statement” on page 8-17 for more information on using try-catch).

try
surf

catch ME
ME

end

8-7

8 Error Handling

Run this at the command line and MATLAB returns the contents of the
MException object:

ME =
MException object with properties:

identifier: 'MATLAB:nargchk:notEnoughInputs'
message: 'Not enough input arguments.'

stack: [1x1 struct]
cause: {}

The stack field shows the filename, function, and line number where the
exception was thrown:

ME.stack
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

The cause field is empty in this case. Each field is described in more detail
in the sections that follow.

Message Identifiers
A message identifier is a tag that you attach to an error or warning statement
that makes that error or warning uniquely recognizable by MATLAB. You can
use message identifiers with error reporting to better identify the source of
an error, or with warnings to control any selected subset of the warnings in
your programs.

The message identifier is a read-only character string that specifies a
component and a mnemonic label for an error or warning. The format of
a simple identifier is

component:mnemonic

A colon separates the two parts of the identifier: component and mnemonic.
If the identifier uses more than one mnemonic, then additional colons are
required to separate them. A message identifier must always contain at
least one colon.

8-8

Capturing Information About the Error

Some examples of message identifiers are

MATLAB:divideByZero
Simulink:actionNotTaken
TechCorp:OpenFile:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax
rules:

• No white space (space or tab characters) is allowed anywhere in the
identifier.

• The first character must be alphabetic, either uppercase or lowercase.

• The remaining characters can be alphanumeric or an underscore.

There is no length limitation to either the component or mnemonic. The
identifier can also be an empty string.

Component Field. The component field specifies a broad category under
which various errors and warnings can be generated. Common components
are a particular product or toolbox name, such as MATLAB or Control, or
perhaps the name of your company, such as TechCorp in the preceding
example.

You can also use this field to specify a multilevel component. The following
statement has a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

The component field enables you to guarantee the uniqueness of each
identifier. Thus, while MATLAB uses the identifier MATLAB:divideByZero for
its 'Divide by zero' warning, you can reuse the divideByZero mnemonic
by using your own unique component. For example,

warning('TechCorp:divideByZero', ...
'A sprocket value was divided by zero.')

8-9

8 Error Handling

Mnemonic Field. The mnemonic field is a string normally used as a tag
relating to the particular message. For example, when reporting an error
resulting from the use of ambiguous syntax, a simple component and
mnemonic such as the following might be appropriate:

MATLAB:ambiguousSyntax

Message Identifiers in an MException Object. When throwing an
exception, create an appropriate identifier and save it to the MException
object at the time you construct the object using the syntax

ME = MException(identifier, string)

For example,

ME = MException('AcctError:NoClient', ...
'Client name not recognized.');

ME.identifier
ans =

AcctError:NoClient

When responding to an exception, you can extract the message identifier from
the MException object as shown here. Using the surf example again,

try
surf

catch ME
id = ME.identifier

end

id =
MATLAB:nargchk:notEnoughInputs

Text of the Error Message
An error message in MATLAB is a read-only character string issued by the
program code and returned in the MException object. This message can assist
the user in determining the cause, and possibly the remedy, of the failure.

8-10

Capturing Information About the Error

When throwing an exception, compose an appropriate error message and
save it to the MException object at the time you construct the object using
the syntax

ME = MException(identifier, string)

If your message string requires formatting specifications, like those available
with the sprintf function, use this syntax for the MException constructor:

ME = MException(identifier, formatstring, arg1, arg2, ...)

For example,

S = 'Accounts'; f1 = 'ClientName';
ME = MException('AcctError:Incomplete', ...

'Field ''%s.%s'' is not defined.', S, f1);

ME.message
ans =

Field 'Accounts.ClientName' is not defined.

When responding to an exception, you can extract the error message from the
MException object as follows:

try
surf

catch ME
msg = ME.message

end

msg =
Not enough input arguments.

The Call Stack
The stack field of the MException object identifies the line number,
function, and filename where the error was detected. If the error occurs in
a called function, as in the following example, the stack field contains the
line number, function name, and filename not only for the location of the
immediate error, but also for each of the calling functions. In this case, stack

8-11

8 Error Handling

is an N-by-1 array, where N represents the depth of the call stack. That is,
the stack field displays the M-file function name and line number where the
exception occurred, the name and line number of the M-file caller, the caller’s
caller, etc., until the top-most M-file function is reached.

When throwing an exception, MATLAB stores call stack information in the
stack field. You cannot write to this field; access is read-only.

For example, suppose you have three functions that reside in two separate
M-files:

mfileA.m
=========================

.

.
42 function A1(x, y)
43 B1(x, y);

mfileB.m
=========================

.

.
8 function B1(x, y)
9 B2(x, y)

.

.
26 function B2(x, y)
27 .
28 .
29 .
30 .
31 % Throw exception here

Catch the exception in variable ME and then examine the stack field:

for k=1:length(ME.stack)
ME.stack(k)

end

8-12

Capturing Information About the Error

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B2'
line: 31

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B1'
line: 9

ans =
file: 'C:\matlab\test\mfileA.m'
name: 'A1'
line: 43

The Cause Array
In some situations, it can be important to record information about not only
the one command that caused execution to stop, but also other exceptions that
your code caught. You can save these additional MException objects in the
cause field of the primary exception.

The cause field of an MException is an optional cell array of related
MException objects. You must use the following syntax when adding objects
to the cause cell array:

primaryException = addCause(primaryException, secondaryException)

This example attempts to assign an array D to variable X. If the D array
does not exist, the code attempts to load it from a MAT-file and then retries
assigning it to X. If the load fails, a new MException object (ME3) is constructed
to store the cause of the first two errors (ME1 and ME2):

try
X = D(1:25)

catch ME1
try

filename = 'test200';
load(filename);
X = D(1:25)

catch ME2
ME3 = MException('MATLAB:LoadErr', ...

8-13

8 Error Handling

'Unable to load from file %s', filename);
ME3 = addCause(ME3, ME1);
ME3 = addCause(ME3, ME2);

end
end

There are two exceptions in the cause field of ME3:

ME3.cause
ans =

[1x1 MException]
[1x1 MException]

Examine the cause field of ME3 to see the related errors:

ME3.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for input

arguments of type 'double'.'
stack: [0x1 struct]
cause: {}

ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file or

directory.'
stack: [0x1 struct]
cause: {}

Methods of the MException Class
There are ten methods that you can use with the MException class. The
names of these methods are case-sensitive. See the MATLAB function
reference pages for more information.

8-14

Capturing Information About the Error

Method Name Description

addCause Append an MException to the cause
field of another MException.

disp Display an MException object.
eq Compare MException objects for

equality.
getReport Return a formatted message based on

the current exception.
isequal Compare MException objects for

equality.
last Return the last uncaught exception.

This is a static method.
ne Compare MException objects for

inequality.
rethrow Reissue an exception that has previously

been caught.
throw Issue an exception.
throwAsCaller Issue an exception, but omit the current

stack frame from the stack field.

8-15

8 Error Handling

Throwing an Exception
When your program detects a fault that will keep it from completing as
expected or will generate erroneous results, you should halt further execution
and report the error by throwing an exception. The basic steps to take are

• Detect the error. This is often done with some type of conditional statement,
such as an if statement that checks the output of the current operation.

• Construct an MException object to represent the error. Add a message
identifier string and error message string to the object when calling the
constructor.

• If there are other exceptions that may have contributed to the current error,
you can store the MException object for each in the cause field of a single
MException that you intend to throw. Use the addCause method for this.

• Use the throw or throwAsCaller function to have the MATLAB software
issue the exception. At this point, MATLAB stores call stack information
in the stack field of the MException, exits the currently running function,
and returns control to either the keyboard or an enclosing catch block in a
calling function.

8-16

Responding to an Exception

Responding to an Exception

In this section...

“Overview” on page 8-17
“The try-catch Statement” on page 8-17
“Suggestions on How to Handle an Exception” on page 8-19

Overview
As stated earlier, the MATLAB software, by default, terminates the currently
running program when an exception is thrown. If you catch the exception in
your program, however, you can capture information about what went wrong,
and deal with the situation in a way that is appropriate for the particular
condition. This requires a try-catch statement.

This section covers the following topics:

The try-catch Statement
When you have statements in your code that could generate undesirable
results, put those statements into a try-catch block that catches any errors
and handles them appropriately.

A try-catch statement looks something like the following pseudocode. It
consists of two parts:

• A try block that includes all lines between the try and catch statements.

• A catch block that includes all lines of code between the catch and end
statements.

try
Perform one ...

or more operations
A catch ME

Examine error info in exception object ME
Attempt to figure out what went wrong
Either attempt to recover, or clean up and abort

8-17

8 Error Handling

end

B Program continues

The program executes the statements in the try block. If it encounters an
error, it skips any remaining statements in the try block and jumps to the
start of the catch block (shown here as point A). If all operations in the try
block succeed, then execution skips the catch block entirely and goes to the
first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try
and catch blocks on separate lines is recommended. If you combine any of
these components on the same line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

You cannot define nested functions within a try or catch block.

The Try Block
On execution, your code enters the try block and executes each statement as
if it were part of the regular program. If no errors are encountered, MATLAB
skips the catch block entirely and continues execution following the end
statement. If any of the try statements fail, MATLAB immediately exits
the try block, leaving any remaining statements in that block unexecuted,
and enters the catch block.

The Catch Block
The catch command marks the start of a catch block and provides access to a
data structure that contains information about what caused the exception.
This is shown as the variable ME in the preceding pseudocode. This data
structure is an object of the MATLAB MException class. When an exception
occurs, MATLAB constructs an instance of this class and returns it in the
catch statement that handles that error.

8-18

Responding to an Exception

You are not required to specify any argument with the catch statement.
If you do not need any of the information or methods provided by the
MException object, just specify the catch keyword alone.

The MException object is constructed by internal code in the program that
fails. The object has properties that contain information about the error
that can be useful in determining what happened and how to proceed. The
MException object also provides access to methods that enable you to respond
to the exception. See the section on“The MException Class” on page 8-5 to
find out more about the MException class.

Having entered the catch block, MATLAB executes the statements in
sequence. These statements can attempt to

• Attempt to resolve the error.

• Capture more information about the error.

• Switch on information found in the MException object and respond
appropriately.

• Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes
MATLAB to exit the current function, keeping the call stack information as it
was when the exception was first thrown. If this function is at the highest
level, that is, it was not called by another function, the program terminates. If
the failing function was called by another function, it returns to that function.
Program execution continues to return to higher level functions, unless any
of these calls were made within a higher-level try block, in which case the
program executes the respective catch block.

More information about the MException class is provided in the section
“Capturing Information About the Error” on page 8-5.

Suggestions on How to Handle an Exception
The following example reads the contents of an image file. The try block
attempts to open and read the file. If either the open or read fails, the
program catches the resulting exception and saves the MException object in
the variable ME1.

8-19

8 Error Handling

The catch block in the example checks to see if the specified file could not be
found. If so, the program allows for the possibility that a common variation
of the filename extension (e.g., jpeg instead of jpg) was used by retrying
the operation with a modified extension. This is done using a try-catch
statement nested within the original try-catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...

~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext
case '.jpg' % Change jpg to jpeg

filename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg' % Change jpeg to jpg

filename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

filename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

filename = strrep(filename, '.tiff', '.tif')
otherwise

fprintf('File %s not found\n', filename);
rethrow(ME1);

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
fprintf('Unable to access file %s\n', filename);

8-20

Responding to an Exception

ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

This example illustrates some of the actions that you can take in response
to an exception:

• Compare the identifier field of the MException object against possible
causes of the error.

• Use a nested try-catch statement to retry the open and read operations
using a known variation of the filename extension.

• Display an appropriate message in the case that the file truly does not
exist and then rethrow the exception.

• Add the first MException object to the cause field of the second.

• Rethrow the exception. This stops program execution and displays the
error message.

Cleaning up any unwanted results of the error is also advisable. For example,
your program may have allocated a significant amount of memory that it
no longer needs.

8-21

8 Error Handling

Warnings

In this section...

“Reporting a Warning” on page 8-22
“Identifying the Cause” on page 8-23

Reporting a Warning
Like error, the warning function alerts the user of unexpected conditions
detected when running a program. However, warning does not halt the
execution of the program. It displays the specified warning message and
then continues.

Use warning in your code to generate a warning message during execution.
Specify the message string as the input argument to warning. For example,

warning('Input must be a string')

Warnings also differ from errors in that you can disable any warnings that
you do not want to see. You do this by invoking warning with certain control
parameters. See “Warning Control” on page 8-24 for more information.

Formatted Message Strings
The warning message string you specify can contain formatting conversion
characters, such as those used with the MATLAB sprintf function. Make
the warning string the first argument, and add any variables used by the
conversion as subsequent arguments.

warning('formatted_warningmsg', arg1, arg2, ...)

For example, if your program cannot process a given parameter, you might
report a warning with

warning('Ambiguous parameter name, "%s".', param)

MATLAB converts special characters like %d and %s in the warning message
string only when you specify more than one input argument with warning.
See “Formatted Message Strings” on page 8-22 for information.

8-22

Warnings

Message Identifiers
Use a message identifier argument with warning to attach a unique tag to a
warning message. MATLAB uses this tag to better identify the source of a
warning. The first argument in this example is the message identifier.

warning('MATLAB:paramAmbiguous', ...
'Ambiguous parameter name, "%s".', param)

See “Warning Control Statements” on page 8-26 for more information on
how to use identifiers with warnings.

Identifying the Cause
The lastwarn function returns a string containing the last warning message
issued by MATLAB. Use this to enable your program to identify the cause
of a warning that has just been issued. To return the most recent warning
message to the variable warnmsg, type

warnmsg = lastwarn;

You can also change the text of the last warning message with a new message
or with an empty string as shown here:

lastwarn('newwarnmsg'); % Replace last warning with new string
lastwarn(''); % Replace last warning with empty string

8-23

8 Error Handling

Warning Control

In this section...

“Overview” on page 8-24
“Warning Statements” on page 8-25
“Warning Control Statements” on page 8-26
“Output from Control Statements” on page 8-28
“Saving and Restoring State” on page 8-30
“Backtrace and Verbose Modes” on page 8-31

Overview
The MATLAB software gives you the ability to control what happens when
a warning is encountered during M-file program execution. Options that
are available include

• Display selected warnings.

• Ignore selected warnings.

• Stop in the debugger when a warning is invoked.

• Display an M-stack trace after a warning is invoked.

Depending on how you set your warning controls, you can have these actions
affect all warnings in your code, specific warnings that you select, or just
the most recently invoked warning.

Setting up this system of warning control involves several steps.

1 Start by determining the scope of the control you need for the warnings
generated by your code. Do you want the control operations to affect all the
warnings in your code at once, or do you want to be able to control certain
warnings separately?

2 If the latter is true, you will need to identify those warnings you want to
selectively control. This requires going through your code and attaching
unique message identifiers to each of those warnings. If, on the other

8-24

Warning Control

hand, you do not require that fine a granularity of control, the warning
statements in your code need no message identifiers.

3 When you are ready to run your programs, use the MATLAB warning
control statements to exercise the desired controls on all or selected
warnings. Include message identifiers in these control statements when
selecting specific warnings to act upon.

Warning Statements
The warning statements you put into your M-file code must contain the string
to be displayed when the warning is incurred, and may also contain a message
identifier. If you are not planning to use warning control or if you do not need
to single out certain warnings for control, you need to specify only the message
string. Use the syntax shown in “Warnings” on page 8-22. Valid formats are

warning('warnmsg')
warning('formatted_warnmsg', arg1, arg2, ...)

Attaching an Identifier to the Warning Statement
If you want to be able to apply control statements to specific warnings, you
need to include a message identifier in the warning statements you wish to
control. The message identifier must be the first argument in the statement.
Valid formats are

warning('msg_id', 'warnmsg')
warning('msg_id', 'formatted_warnmsg', arg1, arg2, ...)

See “Message Identifiers” on page 8-8 for information on how to specify the
msg_id argument.

Note When you specify more than one input argument with warning,
MATLAB treats the warnmsg string as if it were a formatted_warnmsg. This
is explained in “Formatted Message Strings” on page 8-22.

8-25

8 Error Handling

Warning Control Statements
Once you have the warning statements in your M-file and are ready to
execute it, you tell MATLAB how to act on these warnings by issuing control
statements. These statements place the specified warning(s) into a desired
state and have the format

warning state msg_id

Control statements can return information on the state of selected warnings
if you assign the output to a variable, as shown below. See “Output from
Control Statements” on page 8-28.

s = warning('state', 'msg_id');

Warning States
There are three possible values for the state argument of a warning control
statement.

State Description

on Enable the display of selected warning message.
off Disable the display of selected warning message.
query Display the current state of selected warning.

Message Identifiers
In addition to the message identifiers already discussed, there are three other
identifiers that you can use in control statements only.

Identifier Description

msg_id string Set selected warning to the specified state.
all Set all warnings to the specified state.
last Set only the last displayed warning to the specified

state.

8-26

Warning Control

Note MATLAB starts up with all warnings enabled, except for those
displayed in response to the command, warning('query', 'all').

Example 1 — Enabling a Selected Warning
Enable just the actionNotTaken warning from Simulink by first turning off
all warnings and then setting just that warning to on.

warning off all
warning on Simulink:actionNotTaken

Next, use query to determine the current state of all warnings. It
reports that you have set all warnings to off, with the exception of
Simulink:actionNotTaken.

warning query all
The default warning state is 'off'. Warnings not set to the
default are

State Warning Identifier

on Simulink:actionNotTaken

Example 2 — Disabling the Most Recent Warning
Evaluating inv on zero displays a warning message. Turn off the most
recently invoked warning with warning off last.

inv(0)
Warning: Matrix is singular to working precision.
ans =

Inf

warning off last

inv(0) % No warning is displayed this time
ans =

Inf

8-27

8 Error Handling

Output from Control Statements
The warning function, when used in a control statement, returns a MATLAB
structure array containing the previous state of the selected warning(s). Use
the following syntax to return this information in structure array s:

s = warning('state', 'msg_id');

You must type the command using the MATLAB function format; parentheses
and quotation marks are required.

Note MATLAB does not display warning output if you do not assign the
output to a variable.

The next example turns off divideByZero warnings for the MATLAB
component, and returns the identifier and previous state in a 1-by-1
structure array.

s = warning('off','MATLAB:divideByZero')
s =

identifier: 'MATLAB:divideByZero'
state: 'on'

You can use output variables with any type of warning control statement.
If you just want to collect the information but do not want to change state,
simply perform a query on the warning(s). MATLAB returns the current
state of those warnings selected by the message identifier.

s = warning('query', 'msg_id');

If you want to change state, but save the former state so you can restore it
later, use the return structure array to save that state. The following example
does an implicit query, returning state information in s, and then turns on
all warnings.

s = warning('on', 'all');

See “Saving and Restoring State” on page 8-30, for more information on
restoring the former state of warnings.

8-28

Warning Control

Output Structure Array
Each element of the structure array returned by warning contains two fields.

Field Name Description

identifier Message identifier string, 'all', or 'last'
state State of warning(s) prior to invoking this control

statement

If you query for the state of just one warning, using a message identifier or
'last' in the command, MATLAB returns a one-element structure array.
The identifier field contains the selected message identifier, and the state
field holds the current state of that warning:

s = warning('query','last')
s =

identifier: 'MATLAB:divideByZero'
state: 'on'

If you query for the state of all warnings, using 'all' in the command,
MATLAB returns a structure array having one or more elements:

• The first element of the array always represents the default state. (This is
the state set by the last warning on|off all command.)

• Each other element of the array represents a warning that is in a state
different from the default.

warning off all
warning on MATLAB:divideByZero
warning on MATLAB:fileNotFound

s = warning('query', 'all')
s =

3x1 struct array with fields:
identifier
state

s(1)
ans =

8-29

8 Error Handling

identifier: 'all'
state: 'off'

s(2)
ans =

identifier: 'MATLAB:divideByZero'
state: 'on'

s(3)
ans =

identifier: 'MATLAB:fileNotFound'
state: 'on'

Saving and Restoring State
To temporarily change the state of some warnings and then later return to
your original settings, save the original state in a structure array and then
restore it from that array. You can save and restore the state of all of your
warnings or just one that you select with a message identifier.

To save the current warning state, assign the output of a warning control
statement, as discussed in “Output from Control Statements” on page 8-28.
The following statement saves the current state of all warnings in structure
array s:

s = warning('query', 'all');

To restore state from s, use the syntax shown below. Note that the MATLAB
function format (enclosing arguments in parentheses) is required.

warning(s)

Example 1 — Performing an Explicit Query
Perform a query of all warnings to save the current state in structure array s:

s = warning('query', 'all');

Then, after doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

warning(s)

8-30

Warning Control

Example 2 — Performing an Implicit Query
Turn on one particular warning, saving the previous state of this warning
in s. Remember that this nonquery syntax (where state equals on or off)
performs an implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

Restore the state of that one warning when you are ready, with

warning(s)

Backtrace and Verbose Modes
In addition to warning messages, there are two modes that can be enabled or
disabled with a warning control statement. These modes are shown here.

Mode Description Default

backtrace Display an M-stack trace
after a warning is invoked.

on (enabled)

verbose Display a message on how to
suppress the warning.

off (terse)

The syntax for this type of control statement is as follows, where state, in
this case, can be only on, off, or query:

warning state mode

Note that there is no need to include a message identifier with this type of
control statement. All enabled warnings are affected by the this type of
control statement.

Note You cannot save and restore the current state of the backtrace or
verbose modes as you can with other states.

Example 1 — Displaying a Stack Trace on a Specific Warning
It can be difficult to locate the source of a warning when it is generated
from code buried in several levels of function calls. This example generates

8-31

8 Error Handling

a warning within a function that is nested several levels deep within the
primary function in file f1.m:

function f1(a, b)
for k = a:-1:b

f2(k)
end
function f2(x)

f3(x-1)
function f3(y)

x = log(y);
end

end
end

After enabling all warnings, run the M-file. The code generates a Log of
zero warning. In an M-file of this size, it is not difficult to find the cause of the
warning, but in an M-file of several hundred lines, this could take some time:

warning on all

f1(50,1)
Warning: Log of zero.

To simplify the debug process, enable backtrace mode. In this mode, MATLAB
reports which function generated the warning (f3), the line number of the
attempted operation (line 8), the sequence of function calls that led up to the
execution of the function (f1>f2/f3), and the line at which each of these
function call was made (3 and 6):

warning on backtrace
f1(50,1)
Warning: Log of zero.
> In f1>f2/f3 at 8

In f1>f2 at 6
In f1 at 3

Example 2 — Enabling Verbose Warnings
When you enable verbose warnings, MATLAB displays an extra line of
information with each warning that tells you how to suppress it:

8-32

Warning Control

Turn on all warnings, disable backtrace (if you have just run the previous
example), and enable verbose warnings:

warning on all
warning off backtrace
warning on verbose

Call the function described in Example 1 to find out how to suppress any
warnings generated by that function:

f1(50,1)

Warning: Log of zero.

(Type "warning off MATLAB:log:logOfZero" to suppress this warning.)

Use the message identifier MATLAB:log:logOfZero to disable only this
warning, and run the function again. This time the warning message is not
displayed:

warning off MATLAB:log:logOfZero

f1(50,1)

8-33

8 Error Handling

Debugging Errors and Warnings
You can direct the MATLAB software to temporarily stop the execution of an
M-file in the event of a run-time error or warning, at the same time opening a
debug window paused at the M-file line that generated the error or warning.
This enables you to examine values internal to the program and determine
the cause of the error.

Use the dbstop function to have MATLAB stop execution and enter debug
mode when any M-file you subsequently run produces a run-time error or
warning. There are three types of such breakpoints that you can set.

Command Description

dbstop if all
error

Stop on any error.

dbstop if error Stop on any error not detected within a try-catch
block.

dbstop if warning Stop on any warning.

In all three cases, the M-file you are trying to debug must be in a directory
that is on the search path or in the current directory.

You cannot resume execution after an error; use dbquit to exit from the
Debugger. To resume execution after a warning, use dbcont or dbstep.

8-34

9

Program Scheduling

• “Using a MATLAB Timer Object” on page 9-2

• “Creating Timer Objects” on page 9-5

• “Working with Timer Object Properties” on page 9-7

• “Starting and Stopping Timers” on page 9-10

• “Creating and Executing Callback Functions” on page 9-14

• “Timer Object Execution Modes” on page 9-19

• “Deleting Timer Objects from Memory” on page 9-23

• “Finding Timer Objects in Memory” on page 9-24

9 Program Scheduling

Using a MATLAB Timer Object

In this section...

“Overview” on page 9-2
“Example: Displaying a Message” on page 9-3

Overview
The MATLAB software includes a timer object that you can use to schedule
the execution of MATLAB commands. This section describes how you can
create timer objects, start a timer running, and specify the processing that
you want performed when a timer fires. A timer is said to fire when the
amount of time specified by the timer object elapses and the timer object
executes the commands you specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object. See “Creating Timer
Objects” on page 9-5 for more information.

2 Specify which MATLAB commands you want executed when the timer fires
and control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about
all the properties supported by the timer object, see “Working with Timer
Object Properties” on page 9-7. (You can also set timer object properties
when you create them, in step 1.)

3 Start the timer object.

After you create the timer object, you must start it, using either the start
or startat function. See “Starting and Stopping Timers” on page 9-10
for more information.

4 Delete the timer object when you are done with it.

9-2

Using a MATLAB® Timer Object

After you are finished using a timer object, you should delete it from
memory. See “Deleting Timer Objects from Memory” on page 9-23 for more
information.

Note The specified execution time and the actual execution of a timer can
vary because timer objects work in the MATLAB single-threaded execution
environment. The length of this time lag is dependent on what other
processing MATLAB is performing. To force the execution of the callback
functions in the event queue, include a call to the drawnow function in your
code. The drawnow function flushes the event queue.

Example: Displaying a Message
The following example sets up a timer object that executes a MATLAB
command string after 10 seconds elapse. The example creates a timer
object, specifying the values of two timer object properties, TimerFcn and
StartDelay. TimerFcn specifies the timer callback function. This is the
MATLAB command string or M-file that you want to execute when the
timer fires. In the example, the timer callback function sets the value of
the MATLAB workspace variable stat and executes the MATLAB disp
command. The StartDelay property specifies how much time elapses before
the timer fires.

After creating the timer object, the example uses the start function to start
the timer object. (The additional commands in this example are included to
illustrate the timer but are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...
'StartDelay',10);

start(t)

stat=true;
while(stat==true)

disp('.')
pause(1)

end

When you execute this code, it produces this output:

9-3

9 Program Scheduling

.

.

.

.

.

.

.

.

.
Timer!

delete(t) % Always delete timer objects after using them.

9-4

Creating Timer Objects

Creating Timer Objects

In this section...

“Creating the Object” on page 9-5
“Naming the Object” on page 9-6

Creating the Object
To use a timer in MATLAB, you must create a timer object. The timer
object represents the timer in MATLAB, supporting various properties and
functions that control its behavior.

To create a timer object, use the timer function. This creates a valid timer
object with default values for most properties. The following shows an
example of the default timer object and its summary display:

t = timer
Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: ''
ErrorFcn: ''
StartFcn: ''
StopFcn: ''

MATLAB names the timer object timer-1. (See “Naming the Object” on page
9-6 for more information.)

To specify the value of timer object properties after you create it, you can use
the set function. This example sets the value of the TimerFcn property and
the StartDelay property. For more information about timer object properties,
see “Working with Timer Object Properties” on page 9-7.

9-5

9 Program Scheduling

set(t,'TimerFcn','disp(''Hello World!'')','StartDelay',5)

You can also set timer object properties when you create the timer object by
specifying property name and value pairs as arguments to the timer function.
The following example sets the same properties at object creation time:

t = timer('TimerFcn', 'disp(''Hello World!'')','StartDelay',5);

Always delete timer objects when you are done using them. See “Deleting
Timer Objects from Memory” on page 9-23 for more information.

Naming the Object
MATLAB assigns a name to each timer object you create. This name has the
form 'timer-i’, where i is a number representing the total number of timer
objects created this session.

For example, the first time you call the timer function to create a timer object,
MATLAB names the object timer-1. If you call the timer function again to
create another timer object, MATLAB names the object timer-2.

MATLAB keeps incrementing the number associated with each timer object it
creates, even if you delete the timer objects you already created. For example,
if you delete the first two timer objects and create a new object, MATLAB
names it timer-3, even though the other two timer objects no longer exist in
memory. To reset the numeric part of timer object names to 1, execute the
clear classes command.

9-6

Working with Timer Object Properties

Working with Timer Object Properties

In this section...

“Retrieving the Value of Timer Object Properties” on page 9-7
“Setting the Value of Timer Object Properties” on page 9-8

To get information about timer object properties, see the timer function
reference page.

Retrieving the Value of Timer Object Properties
The timer object supports many properties that provide information about
the current state of the timer object and control aspects of its functioning. To
retrieve the value of a timer object property, you can use the get function or
use subscripts (dot notation) to access the field.

The following example uses the set function to retrieve the value of the
ExecutionMode property:

t = timer;

tmode = get(t,'ExecutionMode')

tmode =

singleShot

The following example uses dot notation to retrieve the value of the
ExecutionMode property:

tmode = t.ExecutionMode

tmode =

singleShot

To view a list of all the properties of a timer object, use the get function,
specifying the timer object as the only argument:

9-7

9 Program Scheduling

get(t)
AveragePeriod: NaN

BusyMode: 'drop'
ErrorFcn: ''

ExecutionMode: 'singleShot'
InstantPeriod: NaN

Name: 'timer-4'
ObjectVisibility: 'on'

Period: 1
Running: 'off'

StartDelay: 0
StartFcn: ''
StopFcn: ''

Tag: ''
TasksExecuted: 0

TasksToExecute: Inf
TimerFcn: ''

Type: 'timer'
UserData: []

Setting the Value of Timer Object Properties
To set the value of a timer object property, use the set function or subscripted
assignment (dot notation). You can also set timer object properties when you
create the timer object. For more information, see “Creating Timer Objects”
on page 9-5.

The following example uses both methods to assign values to timer object
properties. The example creates a timer that, once started, displays a message
every second until you stop it with the stop command.

1 Create a timer object.

t = timer;

2 Assign values to timer object properties using the set function.

set(t,'ExecutionMode','fixedRate','BusyMode','drop','Period',1);

3 Assign a value to the timer object TimerFcn property using dot notation.

t.TimerFcn = 'disp(''Processing...'')'

9-8

Working with Timer Object Properties

4 Start the timer object. It displays a message at 1-second intervals.

start(t)

5 Stop the timer object.

stop(t)

6 Delete timer objects after you are done using them.

delete(t)

Viewing a List of All Settable Properties
To view a list of all timer object properties that can have values assigned to
them (in contrast to the read-only properties), use the set function, specifying
the timer object as the only argument.

The display includes the values you can use to set the property if, like the
BusyMode property, the property accepts an enumerated list of values.

t = timer;

set(t)

BusyMode: [{drop} | queue | error]

ErrorFcn: string -or- function handle -or- cell array

ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]

Name

ObjectVisibility: [{on} | off]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array

StopFcn: string -or- function handle -or- cell array

Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array

UserData

9-9

9 Program Scheduling

Starting and Stopping Timers

In this section...

“Starting a Timer” on page 9-10
“Starting a Timer at a Specified Time” on page 9-10
“Stopping Timer Objects” on page 9-11
“Blocking the MATLAB Command Line” on page 9-12

Note Because the timer works within the MATLAB single-threaded
environment, it cannot guarantee execution times or execution rates.

Starting a Timer
To start a timer object, call the start function, specifying the timer object
as the only argument. The start function starts a timer object running;
the amount of time the timer runs is specified in seconds in the StartDelay
property.

This example creates a timer object that displays a greeting after 5 seconds
elapse.

1 Create a timer object, specifying values for timer object properties.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay', 5);

2 Start the timer object.

start(t)

3 Delete the timer object after you are finished using it.

delete(t);

Starting a Timer at a Specified Time
To start a timer object and specify a date and time for the timer to fire, (rather
than specifying the number of seconds to elapse), use the startat function.
This function starts a timer object and allows you to specify the date, hour,

9-10

Starting and Stopping Timers

minute, and second when you want to the timer to execute. You specify
the time as a MATLAB serial date number or as a specially formatted date
text string.

This example creates a timer object that displays a message after an hour has
elapsed. The startat function starts the timer object running and calculates
the value of the StartDelay property based on the time you specify.

t2=timer('TimerFcn','disp(''It has been an hour now.'')');

startat(t2,now+1/24);

Stopping Timer Objects
Once started, the timer object stops running if one of the following conditions
apply:

• The timer function callback (TimerFcn) has been executed the number of
times specified in the TasksToExecute property.

• An error occurred while executing a timer function callback (TimerFcn).

You can also stop a timer object by using the stop function, specifying the
timer object as the only argument. The following example illustrates stopping
a timer object:

1 Create a timer object.

t = timer('TimerFcn','disp(''Hello World!'')', ...
'StartDelay', 100);

2 Start it running.

start(t)

3 Check the state of the timer object after starting it.

get(t,'Running')

ans =

on

9-11

9 Program Scheduling

4 Stop the timer using the stop command and check the state again. When
a timer stops, the value of the Running property of the timer object is set
to 'off'.

stop(t)

get(t,'Running')

ans =

off

5 Delete the timer object when you are finished using it.

delete(t)

Note The timer object can execute a callback function that you specify when
it starts or stops. See “Creating and Executing Callback Functions” on page
9-14.

Blocking the MATLAB Command Line
By default, when you use the start or startat function to start a timer
object, the function returns control to the command line immediately. For
some applications, you might prefer to block the command line until the
timer fires. To do this, call the wait function right after calling the start
or startat function.

1 Create a timer object.

t = timer('StartDelay', 5,'TimerFcn', ...
'disp(''Hello World!'')');

2 Start the timer object running.

start(t)

9-12

Starting and Stopping Timers

3 After the start function returns, call the wait function immediately. The
wait function blocks the command line until the timer object fires.

wait(t)

4 Delete the timer object after you are finished using it.

delete(t)

9-13

9 Program Scheduling

Creating and Executing Callback Functions

In this section...

“Associating Commands with Timer Object Events” on page 9-14
“Creating Callback Functions” on page 9-15
“Specifying the Value of Callback Function Properties” on page 9-17

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Associating Commands with Timer Object Events
The timer object supports properties that let you specify the MATLAB
commands that execute when a timer fires, and for other timer object
events, such as starting, stopping, or when an error occurs. These are called
callbacks. To associate MATLAB commands with a timer object event, set the
value of the associated timer object callback property.

The following diagram shows when the events occur during execution of a
timer object and give the names of the timer object properties associated
with each event. For example, to associate MATLAB commands with a start
event, assign a value to the StartFcn callback property. Error callbacks
can occur at any time.

9-14

Creating and Executing Callback Functions

Timer Object Events and Related Callback Function

Creating Callback Functions
When the time period specified by a timer object elapses, the timer object
executes one or more MATLAB functions of your choosing. You can specify
the functions directly as the value of the callback property. You can also
put the commands in an M-file function and specify the M-file function as
the value of the callback property.

Specifying Callback Functions Directly
This example creates a timer object that displays a greeting after 5 seconds.
The example specifies the value of the TimerFcn callback property directly,
putting the commands in a text string.

t = timer('TimerFcn','disp(''Hello World!'')','StartDelay',5);

9-15

9 Program Scheduling

Note When you specify the callback commands directly as the value of the
callback function property, the commands are evaluated in the MATLAB
workspace.

Putting Commands in a Callback Function
Instead of specifying MATLAB commands directly as the value of a callback
property, you can put the commands in an M-file and specify the M-file as
the value of the callback property.

When you create a callback function, the first two arguments must be a
handle to the timer object and an event structure. An event structure contains
two fields: Type and Data. The Type field contains a text string that identifies
the type of event that caused the callback. The value of this field can be any of
the following strings: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'.
The Data field contains the time the event occurred.

In addition to these two required input arguments, your callback function can
accept application-specific arguments. To receive these input arguments, you
must use a cell array when specifying the name of the function as the value
of a callback property. For more information, see “Specifying the Value of
Callback Function Properties” on page 9-17.

Example: Writing a Callback Function
This example implements a simple callback function that displays the type
of event that triggered the callback and the time the callback occurred. To
illustrate passing application-specific arguments, the example callback
function accepts as an additional argument a text string and includes this
text string in the display output. To see this function used with a callback
property, see “Specifying the Value of Callback Function Properties” on page
9-17.

function my_callback_fcn(obj, event, string_arg)

txt1 = ' event occurred at ';
txt2 = string_arg;

event_type = event.Type;

9-16

Creating and Executing Callback Functions

event_time = datestr(event.Data.time);

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

Specifying the Value of Callback Function Properties
You associate a callback function with a specific event by setting the value of
the appropriate callback property. You can specify the callback function as
a text string, cell array, or function handle. To access the object and event
arguments, you must specify the function as a cell array or as a function
handle. If your callback function accepts additional arguments, you must
use a cell array.

The following table shows the syntax for several sample callback functions
and describes how you call them.

Callback Function Syntax
How to Specify as a Property
Value

function myfile set(h, 'StartFcn', 'myfile')

function myfile(obj, event) set(h, 'StartFcn', @myfile)

function myfile(obj, event,
arg1, arg2)

set(h, 'StartFcn', {'myfile',
5, 6})

function myfile(obj, event,
arg1, arg2)

set(h, 'StartFcn', {@myfile,
5, 6})

This example illustrates several ways you can specify the value of timer object
callback function properties, some with arguments and some without. To see
the code of the callback function, my_callback_fcn, see “Example: Writing
a Callback Function” on page 9-16.

1 Create a timer object.

t = timer('StartDelay', 4,'Period', 4,'TasksToExecute', 2,...
'ExecutionMode','fixedRate');

9-17

9 Program Scheduling

2 Specify the value of the StartFcn callback. Note that the example specifies
the value in a cell array because the callback function needs to access
arguments passed to it.

t.StartFcn = {'my_callback_fcn', 'My start message'};

3 Specify the value of the StopFcn callback. The example specifies the
callback function by its handle, rather than as a text string. Again, the
value is specified in a cell array because the callback function needs to
access the arguments passed to it.

t.StopFcn = { @my_callback_fcn, 'My stop message'};

4 Specify the value of the TimerFcn callback. The example specifies the
MATLAB commands in a text string.

t.TimerFcn = 'disp(''Hello World!'')';

5 Start the timer object.

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
Start message
Hello World!
Hello World!
StopFcn event occurred at 10-Mar-2004 17:16:59
Stop message

6 Delete the timer object after you are finished with it.

delete(t)

9-18

Timer Object Execution Modes

Timer Object Execution Modes

In this section...

“Executing a Timer Callback Function Once” on page 9-19
“Executing a Timer Callback Function Multiple Times” on page 9-20
“Handling Callback Function Queuing Conflicts” on page 9-21

Executing a Timer Callback Function Once
The timer object supports several execution modes that determine how it
schedules the timer callback function (TimerFcn) for execution. You specify
the execution mode by setting the value of the ExecutionMode property.

To execute a timer callback function once, set the ExecutionMode property to
'singleShot'. This is the default execution mode. In this mode, the timer
object starts the timer and, after the time period specified in the StartDelay
property elapses, adds the timer callback function (TimerFcn) to the MATLAB
execution queue. When the timer callback function finishes, the timer stops.

The following figure graphically illustrates the parts of timer callback
execution for a singleShot execution mode. The shaded area in the figure,
labelled queue lag, represents the indeterminate amount of time between
when the timer adds a timer callback function to the MATLAB execution
queue and when the function starts executing. The duration of this lag is
dependent on what other processing MATLAB happens to be doing at the time.

Timer Callback Execution (singleShot Execution Mode)

9-19

9 Program Scheduling

Executing a Timer Callback Function Multiple Times
The timer object supports three multiple-execution modes:

• 'fixedRate'

• 'fixedDelay'

• 'fixedSpacing'

In many ways, these execution modes operate the same:

• The TasksToExecute property specifies the number of times you want the
timer to execute the timer callback function (TimerFcn).

• The Period property specifies the amount of time between executions of
the timer callback function.

• The BusyMode property specifies how the timer object handles queuing of
the timer callback function when the previous execution of the callback
function has not completed. See “Handling Callback Function Queuing
Conflicts” on page 9-21 for more information.

The execution modes differ only in where they start measuring the time
period between executions. The following table describes these differences.

Execution
Mode Description

'fixedRate' Time period between executions begins immediately after
the timer callback function is added to the MATLAB
execution queue.

'fixedDelay' Time period between executions begins when the timer
function callback actually starts executing, after any time
lag due to delays in the MATLAB execution queue.

'fixedSpacing' Time period between executions begins when the timer
callback function finishes executing.

The following figure illustrates the difference between these modes. Note that
the amount of time between executions (specified by the Period property)
remains the same. Only the point at which execution begins is different.

9-20

Timer Object Execution Modes

Differences Between Execution Modes

Handling Callback Function Queuing Conflicts
At busy times, in multiple-execution scenarios, the timer may need to add the
timer callback function (TimerFcn) to the MATLAB execution queue before
the previously queued execution of the callback function has completed.
You can determine how the timer object handles this scenario by using the
BusyMode property.

If you specify 'drop' as the value of the BusyMode property, the timer object
skips the execution of the timer function callback if the previously scheduled
callback function has not already completed.

If you specify 'queue', the timer object waits until the currently executing
callback function finishes before queuing the next execution of the timer
callback function.

9-21

9 Program Scheduling

Note In 'queue' mode, the timer object tries to make the average time
between executions equal the amount of time specified in the Period property.
If the timer object has to wait longer than the time specified in the Period
property between executions of the timer function callback, it shortens the
time period for subsequent executions to make up the time.

If the BusyMode property is set to 'error', the timer object stops and executes
the timer object error callback function (ErrorFcn), if one is specified.

9-22

Deleting Timer Objects from Memory

Deleting Timer Objects from Memory

In this section...

“Deleting One or More Timer Objects” on page 9-23
“Testing the Validity of a Timer Object” on page 9-23

Deleting One or More Timer Objects
When you are finished with a timer object, delete it from memory using the
delete function:

delete(t)

When you delete a timer object, workspace variables that referenced the object
remain. Deleted timer objects are invalid and cannot be reused. Use the clear
command to remove workspace variables that reference deleted timer objects.

To remove all timer objects from memory, enter

delete(timerfind)

For information about the timerfind function, see “Finding Timer Objects in
Memory” on page 9-24.

Testing the Validity of a Timer Object
To test if a timer object has been deleted, use the isvalid function. The
isvalid function returns logical 0 (false) for deleted timer objects:

isvalid(t)
ans =

0

9-23

9 Program Scheduling

Finding Timer Objects in Memory

In this section...

“Finding All Timer Objects” on page 9-24
“Finding Invisible Timer Objects” on page 9-24

Finding All Timer Objects
To find all the timer objects that exist in memory, use the timerfind function.
This function returns an array of timer objects. If you leave off the semicolon,
and there are multiple timer objects in the array, timerfind displays
summary information in a table:

t1 = timer;
t2 = timer;
t3 = timer;
t_array = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-3
2 singleShot 1 '' timer-4
3 singleShot 1 '' timer-5

Using timerfind to determine all the timer objects that exist in memory can
be helpful when deleting timer objects.

Finding Invisible Timer Objects
If you set the value of a timer object’s ObjectVisibility property to
'off', the timer object does not appear in listings of existing timer objects
returned by timerfind. The ObjectVisibility property provides a way for
application developers to prevent end-user access to the timer objects created
by their application.

Objects that are not visible are still valid. If you have access to the object (for
example, from within the M-file that created it), you can set its properties. To

9-24

Finding Timer Objects in Memory

retrieve a list of all the timer objects in memory, including invisible ones, use
the timerfindall function.

9-25

9 Program Scheduling

9-26

10

Performance

• “Analyzing Your Program’s Performance” on page 10-2

• “Techniques for Improving Performance” on page 10-4

• “MATLAB Multiprocessing” on page 10-13

10 Performance

Analyzing Your Program’s Performance

In this section...

“Overview” on page 10-2
“The M-File Profiler Utility” on page 10-2
“Stopwatch Timer Functions” on page 10-2

Overview
The M-file Profiler graphical user interface and the stopwatch timer functions
enable you to get back information on how your program is performing
and help you identify areas that need improvement. The Profiler can be
more useful in measuring relative execution time and in identifying specific
performance bottlenecks in your code, while the stopwatch functions tend to
be more useful for providing absolute time measurements.

The M-File Profiler Utility
A good first step to speeding up your programs is to find out where the
bottlenecks are. This is where you need to concentrate your attention to
optimize your code.

The MATLAB software provides the M-file Profiler, a graphical user interface
that shows you where your program is spending its time during execution.
Use the Profiler to help you determine where you can modify your code to
make performance improvements.

To start the Profiler, type profile viewer or select Desktop > Profiler in
the MATLAB Command Window. See Profiling for Improving Performance in
the MATLAB Desktop Tools and Development Environment documentation,
and the profile function reference page.

Stopwatch Timer Functions
If you just need to get an idea of how long your program (or a portion of
it) takes to run, or to compare the speed of different implementations of a
program, you can use the stopwatch timer functions, tic and toc. Invoking

10-2

Analyzing Your Program’s Performance

tic starts the timer, and the first subsequent toc stops it and reports the
time elapsed between the two.

Use tic and toc as shown here:

tic
-- run the program section to be timed --

toc

Keep in mind that tic and toc measure overall elapsed time. Make sure that
no other applications are running in the background on your system that
could affect the timing of your MATLAB programs.

Measuring Smaller Programs
Shorter programs sometimes run too fast to get useful data from tic and toc.
When this is the case, try measuring the program running repeatedly in a
loop, and then average to find the time for a single run:

tic
for k = 1:100

-- run the program --
end

toc

Using tic and toc Versus the cputime Function
Although it is possible to measure performance using the cputime function,
it is recommended that you use the tic and toc functions for this purpose
exclusively. It has been the general rule for CPU-intensive calculations
run on Microsoft Windows machines that the elapsed time using cputime
and the elapsed time using tic and toc are close in value, ignoring any
first time costs. There are cases however that show a significant difference
between these two methods. For example, in the case of a Pentium 4 with
hyperthreading running Windows, there can be a significant difference
between the values returned by cputime versus tic and toc.

10-3

10 Performance

Techniques for Improving Performance

In this section...

“Vectorizing Loops” on page 10-4
“Preallocating Arrays” on page 10-7
“Use Distributed Arrays for Large Datasets” on page 10-9
“When Possible, Replace for with parfor (Parallel for)” on page 10-9
“Multithreading Capabilities in MATLAB” on page 10-9
“Limiting M-File Size and Complexity” on page 10-9
“Coding Loops in a MEX-File” on page 10-10
“Assigning to Variables” on page 10-10
“Operating on Real Data” on page 10-11
“Using Appropriate Logical Operators” on page 10-11
“Overloading Built-In Functions” on page 10-12
“Functions Are Generally Faster Than Scripts” on page 10-12
“Load and Save Are Faster Than File I/O Functions” on page 10-12
“Avoid Large Background Processes” on page 10-12

Vectorizing Loops
The MATLAB software uses a matrix language, which means it is designed
for vector and matrix operations. You can often speed up your M-file code by
using vectorizing algorithms that take advantage of this design. Vectorization
means converting for and while loops to equivalent vector or matrix
operations.

Simple Example of Vectorizing
Here is one way to compute the sine of 1001 values ranging from 0 to 10:

i = 0;
for t = 0:.01:10

i = i + 1;

10-4

Techniques for Improving Performance

y(i) = sin(t);
end

A vectorized version of the same code is

t = 0:.01:10;
y = sin(t);

The second example executes much faster than the first and is the way
MATLAB is meant to be used. Test this on your system by creating M-file
scripts that contain the code shown, and then using the tic and toc functions
to time the M-files.

Advanced Example of Vectorizing
repmat is an example of a function that takes advantage of vectorization. It
accepts three input arguments: an array A, a row dimension M, and a column
dimension N.

repmat creates an output array that contains the elements of array A,
replicated and “tiled” in an M-by-N arrangement:

A = [1 2 3; 4 5 6];

B = repmat(A,2,3);
B =

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6

repmat uses vectorization to create the indices that place elements in the
output array:

function B = repmat(A, M, N)

% Step 1 Get row and column sizes
[m,n] = size(A);

% Step 2 Generate vectors of indices from 1 to row/column size
mind = (1:m)';

10-5

10 Performance

nind = (1:n)';

% Step 3 Create index matrices from vectors above
mind = mind(:,ones(1, M));
nind = nind(:,ones(1, N));

% Step 4 Create output array
B = A(mind,nind);

Step 1, above, obtains the row and column sizes of the input array.

Step 2 creates two column vectors. mind contains the integers from 1 through
the row size of A. The nind variable contains the integers from 1 through
the column size of A.

Step 3 uses a MATLAB vectorization trick to replicate a single column of
data through any number of columns. The code is

B = A(:,ones(1,nCols))

where nCols is the desired number of columns in the resulting matrix.

Step 4 uses array indexing to create the output array. Each element of the
row index array, mind, is paired with each element of the column index array,
nind, using the following procedure:

1 The first element of mind, the row index, is paired with each element of
nind. MATLAB moves through the nind matrix in a columnwise fashion,
so mind(1,1) goes with nind(1,1), and then nind(2,1), and so on. The
result fills the first row of the output array.

2 Moving columnwise through mind, each element is paired with the elements
of nind as above. Each complete pass through the nind matrix fills one row
of the output array.

Caution While repmat can take advantage of vectorization, it can do so
at the expense of memory usage. When this is the case, you might find the
bsxfun function be more appropriate in this respect.

10-6

Techniques for Improving Performance

Functions Used in Vectorizing
Some of the most commonly used functions for vectorizing are as follows

Function Description

all Test to determine if all elements are nonzero
any Test for any nonzeros
cumsum Find cumulative sum
diff Find differences and approximate derivatives
find Find indices and values of nonzero elements
ind2sub Convert from linear index to subscripts
ipermute Inverse permute dimensions of a multidimensional array
logical Convert numeric values to logical
ndgrid Generate arrays for multidimensional functions and

interpolation
permute Rearrange dimensions of a multidimensional array
prod Find product of array elements
repmat Replicate and tile an array
reshape Change the shape of an array
shiftdim Shift array dimensions
sort Sort array elements in ascending or descending order
squeeze Remove singleton dimensions from an array
sub2ind Convert from subscripts to linear index
sum Find the sum of array elements

Preallocating Arrays
for and while loops that incrementally increase, or grow, the size of a data
structure each time through the loop can adversely affect performance and
memory use. Repeatedly resizing arrays often requires that MATLAB spend
extra time looking for larger contiguous blocks of memory and then moving
the array into those blocks. You can often improve on code execution time by

10-7

10 Performance

preallocating the maximum amount of space that would be required for the
array ahead of time.

The following code creates a scalar variable x, and then gradually increases
the size of x in a for loop instead of preallocating the required amount of
memory at the start:

x = 0;
for k = 2:1000

x(k) = x(k-1) + 5;
end

Change the first line to preallocate a 1-by-1000 block of memory for x
initialized to zero. This time there is no need to repeatedly reallocate memory
and move data as more values are assigned to x in the loop:

x = zeros(1, 1000);
for k = 2:1000

x(k) = x(k-1) + 5;
end

Preallocation Functions
Preallocation makes it unnecessary for MATLAB to resize an array each time
you enlarge it. Use the appropriate preallocation function for the kind of
array you are working with.

Array Type Function Examples

Numeric zeros y = zeros(1, 100);

Cell cell B = cell(2, 3);
B{1,3} = 1:3;
B{2,2} = 'string';

Preallocating a Nondouble Matrix
When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100));

10-8

Techniques for Improving Performance

This statement preallocates a 100-by-100 matrix of int8 first by creating a
full matrix of doubles, and then converting each element to int8. This costs
time and uses memory unnecessarily.

The next statement shows how to do this more efficiently:

A = zeros(100, 'int8');

Use Distributed Arrays for Large Datasets
This topic is described in the “Parallel Math” section of the Parallel
Computing Toolbox™ documentation.

When Possible, Replace for with parfor (Parallel for)
This topic is described in the “Parallel for-Loops” section of the Parallel
Computing Toolbox documentation.

Multithreading Capabilities in MATLAB
See “Implicit Multiprocessing” on page 10-14 to learn more about making
use of multithreaded computation.

Limiting M-File Size and Complexity
Running programs that are unusually large or complex can put a strain on
your system’s resources. For example, a program that nearly exceeds memory
capacity may work some of the time and sometimes not, depending on the
commands it uses and on what other applications are running at the time. An
example of unnecessary complexity might be having a large number of if and
else statements where switch and case might be more suitable. This can
also lead to performance and space problems. If you see the following error
message displayed, this is likely to be the source of the problem:

The input was too complicated or too big for MATLAB to parse

If you have an M-file that includes thousands of variables or functions, tens
of thousands of statements, or hundreds of language keyword pairs (e.g.,
if-else, or try-catch), then making some of the changes suggested here is
likely to not only boost its performance and reliability, but should make your
program code easier to understand and maintain as well.

10-9

10 Performance

• Split large script files into smaller ones, having the first file call the second
if necessary.

• Take your larger chunks of program code and make separate functions (or
subfunctions and nested functions) of them.

• If you have functions or expressions by that seem overly complicated, make
smaller and simpler functions or expressions of them. Simpler functions
are also more likely to be made into utility functions that you can share
with others.

Coding Loops in a MEX-File
If there are instances where you cannot vectorize and must use a for or
while loop, consider coding the loop in a MEX-file. In this way, the loop
executes much more quickly since the instructions in the loop do not have to
be interpreted each time they execute.

See “Using MEX-Files to Call C and Fortran Programs” in the External
Interfaces documentation.

Assigning to Variables
For best performance, keep the following suggestions in mind when assigning
values to variables.

Changing a Variable’s Data Type or Dimension
Changing the class or array shape of an existing variable slows MATLAB
down as it must take extra time to process this. When you need to store data
of a different type, it is advisable to create a new variable.

This code changes the type for X from double to char, which has a negative
impact on performance:

X = 23;
.

-- other code --
.

X = 'A'; % X changed from type double to char
.

-- other code --

10-10

Techniques for Improving Performance

Assigning Real and Complex Numbers
Assigning a complex number to a variable that already holds a real number
impacts the performance of your program. Similarly, you should not assign a
real value to a variable that already holds a complex value.

Operating on Real Data
When operating on real (i.e., noncomplex) numbers, it is more efficient to use
MATLAB functions that have been designed specifically for real numbers.
The following functions return numeric values that are real.

Function Description

reallog Find natural logarithm for nonnegative real arrays
realpow Find array power for real-only output
realsqrt Find square root for nonnegative real arrays

Using Appropriate Logical Operators
When performing a logical AND or OR operation, you have a choice of two
operators of each type.

Operator Description

&, | Perform logical AND and OR on arrays element by
element

&&, || Perform logical AND and OR on scalar values with
short-circuiting

In if and while statements, it is more efficient to use the short-circuiting
operators, && for logical AND and || for logical OR. This is because these
operators often do not have to evaluate the entire logical expression. For
example, MATLAB evaluates only the first part of this expression whenever
the number of input arguments is less than three:

if (nargin >= 3) && (ischar(varargin{3}))

See Short-Circuit Operators in the MATLAB documentation for a discussion
on short-circuiting with && and ||.

10-11

10 Performance

Overloading Built-In Functions
Overloading MATLAB built-in functions on any of the standard MATLAB
data classes can negatively affect performance. For example, if you overload
the plus function to handle any of the integer classes differently, you may
hinder certain optimizations in the MATLAB built-in function code for plus,
and thus may slow down any programs that make use of this overload.

Functions Are Generally Faster Than Scripts
Your code executes more quickly if it is implemented in a function rather
than a script.

Load and Save Are Faster Than File I/O Functions
If you have a choice of whether to use load and save instead of the low-level
MATLAB file I/O routines such as fread and fwrite, choose the former.
load and save have been optimized to run faster and reduce memory
fragmentation.

Avoid Large Background Processes
Avoid running large processes in the background at the same time you are
executing your program in MATLAB. This frees more CPU time for your
MATLAB session.

10-12

MATLAB® Multiprocessing

MATLAB Multiprocessing

In this section...

“Overview” on page 10-13
“Implicit Multiprocessing” on page 10-14
“Explicit Multiprocessing” on page 10-16

Overview
The MATLAB software supports two types of multiprocessing: implicit and
explicit.

Implicit Multiprocessing
Characteristics of implicit multiprocessing:

• Runs multiple threads on a single machine, most often using one thread
per processing unit.

• Requires a multiple CPU (multiprocessor or multicore) system.

• Speeds up elementwise computations such as those done by the sin
and log functions, and computations that use the Basic Linear Algebra
Subroutines (BLAS) library, such as matrix multiply.

• Does not require any changes to your MATLAB code.

• Works behind the scenes to take advantage of the processing units available
to you. It does this by multithreading the computationally-intensive math
library functions that you use in the course of your MATLAB session.

MATLAB enables multithreaded computation by default. You can disable it
by specifying the singleCompThread option when starting MATLAB.

Explicit Multiprocessing
Characteristics of explicit multiprocessing:

• Runs separate processes on one or many machines.

• Requires installation of Parallel Computing Toolbox.

10-13

10 Performance

• Speeds up execution of large MATLAB jobs. Enables you to run jobs
simultaneously on a cluster of computers, or as several processes on a
single machine.

• Requires that you modify your MATLAB code.

• The Parallel Computing Toolbox supports programming constructs for
distributed arrays and parallel for (parfor) loops. It also supports both
interactive and batch execution.

Enable explicit multiprocessing by installing Parallel Computing Toolbox.

Implicit Multiprocessing
Multithreaded computation runs in a single instance of MATLAB
and generates simultaneous instruction streams on a multiple CPU
(multiprocessor or multicore) system. The multiple processors share the
memory of a single computer. The work to be processed is implicitly
partitioned for execution on multiple threads. Multithreaded computation in
MATLAB speeds up elementwise computations such as those done by the
sin and log functions, and computations that use the Basic Linear Algebra
Subroutines (BLAS) library, such as matrix multiply.

If you are using a multiple-CPU system, you can run a demo to see the
performance impact—see Multithreaded Computation in the Help browser
Demos pane, under MATLAB Mathematics.

For information regarding specific functions, search for “Which MATLAB
Functions Support Multithreaded Computation” on The MathWorks online
Support page.

Platform Differences and Multithreaded Computation
The BLAS library used for multithreaded computation differs according to
which platform you are using:

Platform BLAS Used

Windows with Intel® processors Intel MKL BLAS
Windows with AMD processors AMD® ACML™ BLAS

10-14

MATLAB® Multiprocessing

Platform BLAS Used

Linux1 with Intel processors Intel MKL BLAS
Linux with AMD processors AMD ACML BLAS
Macintosh Intel-based Intel MKL BLAS
Solaris™ Sun Performance Library BLAS

Enabling Multithreaded Computation

Note See “MATLAB Multiprocessing” on page 10-13 for an overview of the
multiprocessing capabilities provided with MATLAB.

Multithreaded computation in MATLAB is enabled by default. When enabled,
MATLAB automatically detects the number of CPUs on your system and
recommends the number of threads based on that. To disable multithreaded
computation, start MATLAB using the singleCompThread option.

To set or retrieve the maximum number of computational threads from the
command line or from within an M-file program, use the maxNumCompThreads
function. You can either set the maximum number of computational threads
to a specific number, or indicate that you want the setting to be done
automatically by MATLAB.

To set the maximum number of computational threads to a specific number
N, use

maxNumCompThreads(N)

To have MATLAB set the maximum number of threads, use:

maxNumCompThreads('automatic')

maxNumCompThreads also returns the current maximum number of threads
if you call it with an output value:

oldN = MaxNumCompThreads(newN)

1. Linux is a registered trademark of Linus Torvalds.

10-15

10 Performance

Setting the Number of Threads Programmatically

Explicit Multiprocessing
See the Parallel Computing Toolbox documentation for information regarding
explicit multiprocessing in MATLAB.

10-16

11

Memory Usage

• “Memory Allocation” on page 11-2

• “Memory Management Functions” on page 11-12

• “Strategies for Efficient Use of Memory” on page 11-14

• “Resolving “Out of Memory” Errors” on page 11-22

11 Memory Usage

Memory Allocation

In this section...

“Memory Allocation for Arrays” on page 11-2
“Data Structures and Memory” on page 11-7

For more information on memory management, see Technical Note 1106:
“Memory Management Guide” at the following URL:

http://www.mathworks.com/support/tech-notes/1100/1106.html

Memory Allocation for Arrays
The topics below provide information on how the MATLAB software allocates
memory when working with arrays and variables. The purpose is to help
you use memory more efficiently when writing code. Most of the time,
however, you should not need to be concerned with these internal operations
as MATLAB handles data storage for you automatically.

• “Creating and Modifying Arrays” on page 11-2

• “Copying Arrays” on page 11-3

• “Array Headers” on page 11-5

• “Function Arguments” on page 11-6

Note Any information on how the MATLAB software handles data internally
is subject to change in future releases.

Creating and Modifying Arrays
When you assign a numeric or character array to a variable, MATLAB
allocates a contiguous virtual block of memory and stores the array data in
that block. MATLAB also stores information about the array data, such as its
class and dimensions, in a separate, small block of memory called a header.

11-2

http://www.mathworks.com/support/tech-notes/1100/1106.html

Memory Allocation

If you add new elements to an existing array, MATLAB expands the existing
array in memory in a way that keeps its storage contiguous. This usually
requires finding a new block of memory large enough to hold the expanded
array. MATLAB then copies the contents of the array from its original
location to this new block in memory, adds the new elements to the array in
this block, and frees up the original array location in memory.

If you remove elements from an existing array, MATLAB keeps the memory
storage contiguous by removing the deleted elements, and then compacting its
storage in the original memory location.

Working with Large Data Sets. If you are working with large data sets,
you need to be careful when increasing the size of an array to avoid getting
errors caused by insufficient memory. If you expand the array beyond the
available contiguous memory of its original location, MATLAB must make a
copy of the array and set this copy to the new value. During this operation,
there are two copies of the original array in memory. This temporarily doubles
the amount of memory required for the array and increases the risk of your
program running out of memory during execution. It is better to preallocate
sufficient memory for the largest potential size of the array at the start. See
“Preallocating Arrays” on page 10-7.

Copying Arrays
Internally, multiple variables can point to the same block of data, thus
sharing that array’s value. When you copy a variable to another variable (e.g.,
B = A), MATLAB makes a copy of the array reference, but not the array itself.
As long as you do not modify the contents of the array, there is no need to
store more than one copy of it. If you do modify any elements of the array,
MATLAB makes a copy of the array and then modifies that copy.

The following example demonstrates this. Start by creating a simple M-file
script memUsed.m to display how much memory is currently being used by
your MATLAB process. Put these two lines of code in the script:

[usr, sys] = memory;
usr.MemUsedMATLAB

Get an initial reading of how much memory is currently being used by your
MATLAB process:

11-3

11 Memory Usage

format short eng;
memUsed
ans =

295.4977e+006

Create a 2000-by-2000 numeric array A. This uses about 32MB of memory:

A = magic(2000);
memUsed
ans =

327.6349e+006

Make a copy of array A in B. As there is no need at this point to have two
copies of the array data, MATLAB only makes a copy of the array reference.
This requires no significant additional memory:

B = A;
memUsed
ans =

327.6349e+006

Now modify B by making it one half its original size (i.e., set 1000 rows to
empty). This requires that MATLAB make a copy of at least the first 1000
rows of the A array, and assign that copy to B:

B(1001:2000,:) = [];
format short; size(B)
ans =

1000 2000

Check the memory used again. Even though B is significantly smaller than
it was originally, the amount of memory used by the MATLAB process has
increased by about 16 MB (1/2 of the 32 MB originally required for A) because
B could no longer remain as just a reference to A:

format short eng; memUsed
ans =

343.6421e+006

11-4

Memory Allocation

Array Headers
When you assign an array to a variable, MATLAB also stores information
about the array (such as class and dimensions) in a separate piece of memory
called a header. For most arrays, the memory required to store the header is
insignificant. There is a small advantage to storing large data sets in a small
number of large arrays as opposed to a large number of small arrays. This is
because the former configuration requires fewer array headers.

Structure and Cell Arrays. For structures and cell arrays, MATLAB creates
a header not only for each array, but also for each field of the structure and
for each cell of a cell array. Because of this, the amount of memory required to
store a structure or cell array depends not only on how much data it holds,
but also on how it is constructed.

For example, take a scalar structure array S1 having fields R, G, and B. Each
field of size 100-by-50 requires one array header to describe the overall
structure, one header for each unique field name, and one header per field
for the 1-by-1 structure array. This makes a total of seven array headers
for the entire data structure:

S1.R(1:100,1:50)
S1.G(1:100,1:50)
S1.B(1:100,1:50)

On the other hand, take a 100-by-50 structure array S2 in which each element
has scalar fields R, G, and B. You only need one array header to describe the
overall structure, one for each unique field name, and one per field for each of
the 5,000 elements of the structure, making a total of 15,004 array headers
for the entire data structure:

S2(1:100,1:50).R
S2(1:100,1:50).G
S2(1:100,1:50).B

Even though S1 and S2 contain the same amount of data, S1 uses significantly
less space in memory. Not only is less memory required, but there is a
corresponding speed benefit to using the S1 format, as well.

See “Cell Arrays” and “Structures” under “Data Structures and Memory”
on page 11-7.

11-5

11 Memory Usage

Memory Usage Reported By the whos Function. The whos function
displays the amount of memory consumed by any variable. For reasons of
simplicity, whos reports only the memory used to store the actual data. It does
not report storage for the array header, for example.

Function Arguments
MATLAB handles arguments passed in function calls in a similar way. When
you pass a variable to a function, you are actually passing a reference to the
data that the variable represents. As long as the input data is not modified
by the function being called, the variable in the calling function and the
variable in the called function point to the same location in memory. If the
called function modifies the value of the input data, then MATLAB makes
a copy of the original array in a new location in memory, updates that copy
with the modified value, and points the input variable in the called function to
this new array.

In the example below, function myfun modifies the value of the array passed
into it. MATLAB makes a copy in memory of the array pointed to by A, sets
variable X as a reference to this new array, and then sets one row of X to zero.
The array referenced by A remains unchanged:

A = magic(500);
myfun(A);

function myfun(X)
X(400,:) = 0;

If the calling function needs the modified value of the array it passed to myfun,
you need to return the updated array as an output of the called function,
as shown here for variable A:

A = magic(500);
A = myfun(A);
sprintf('The new value of A is %d', A)

function Y = myfun(X)
X(400,:) = 0;
Y = X;

11-6

Memory Allocation

Data Structures and Memory
Memory requirements differ for the various types of MATLAB data structures.
You may be able to reduce the amount of memory used for these structures by
considering how MATLAB stores them.

Numeric Arrays
MATLAB requires 1, 2, 4, or 8 bytes to store 8-bit, 16-bit, 32-bit, and 64-bit
signed and unsigned integers, respectively. For floating-point numbers,
MATLAB uses 4 or 8 bytes for single and double types. To conserve memory
when working with numeric arrays, The MathWorks recommends that you
use the smallest integer or floating-point type that will contain your data
without overflowing. For more information, see "Numeric Types" in the
MATLAB Programming Fundamentals documentation.

Complex Arrays
MATLAB stores complex data as separate real and imaginary parts. If you
make a copy of a complex array variable, and then modify only the real or
imaginary part of the array, MATLAB creates a new array containing both
real and imaginary parts.

Sparse Matrices
It is best to store matrices with values that are mostly zero in sparse format.
Sparse matrices can use less memory and may also be faster to manipulate
than full matrices. You can convert a full matrix to sparse format using the
sparse function.

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of its
elements equal to zero; and Y, a sparse copy of X. The following example shows
that the sparse matrix requires approximately half as much memory:

whos
Name Size Bytes Class

X 1000x1000 8000000 double array
Y 1000x1000 4004000 double array (sparse)

11-7

11 Memory Usage

Cell Arrays
In addition to data storage, cell arrays require a certain amount of additional
memory to store information describing each cell. This information is
recorded in a header, and there is one header for each cell of the array. You
can determine the amount of memory required for a cell array header by
finding the number of bytes consumed by a 1-by-1 cell that contains no data,
as shown below for a 32-bit system:

A = {[]}; % Empty cell array

whos A
Name Size Bytes Class Attributes

A 1x1 60 cell

In this case, MATLAB shows the number of bytes required for each header in
the cell array on a 32-bit system to be 60. This is the header size that is used
in all of the 32-bit examples in this section. For 64-bit systems, the header
size is assumed to be 112 bytes in this documentation. You can find the
correct header size on a 64-bit system using the method just shown for 32 bits.

To predict the size of an entire cell array, multiply the number you have just
derived for the header by the total number of cells in the array, and then
add to that the number of bytes required for the data you intend to store
in the array:

(header_size x number_of_cells) + data

So a 10-by-20 cell array that contains 400 bytes of data would require 22,800
bytes of memory on a 64-bit system:

(112 x 200) + 400 = 22800

Note While numeric arrays must be stored in contiguous memory, structures
and cell arrays do not.

Example 1 – Memory Allocation for a Cell Array. The following 4-by-1
cell array records the brand name, screen size, price, and on-sale status for
three laptop computers:

11-8

Memory Allocation

Laptops = {['SuperrrFast 89X', 'ReliablePlus G5', ...
'UCanA4dIt 140L6']; ...

[single(17), single(15.4), single(14.1)]; ...
[2499.99, 1199.99, 499.99]; ...
[true, true, false]};

On a 32-bit system, the cell array header alone requires 60 bytes per cell:

4 cells * 60 bytes per cell = 240 bytes for the cell array

Calculate the memory required to contain the data in each of the four cells:

45 characters * 2 bytes per char = 90 bytes
3 doubles * 8 bytes per double = 24 bytes
3 singles * 4 bytes per single = 12 bytes
3 logicals * 1 byte per logical = 3 bytes

90 + 24 + 12 + 3 = 129 bytes for the data

Add the two, and then compare your result with the size returned by
MATLAB:

240 + 129 = 369 bytes total

whos Laptops
Name Size Bytes Class Attributes

Laptops 4x1 369 cell

Structures

S.A = [];
B = whos('S');
B.bytes - 60
ans =

64

Compute the memory needed for a structure array as follows:

32-bit systems: fields x ((60 x array elements) + 64) + data
64-bit systems: fields x ((112 x array elements) + 64) + data

11-9

11 Memory Usage

On a 64-bit computer system, a 4-by-5 structure Clients with fields Address
and Phone uses 4,608 bytes just for the structure:

2 fields x ((112 x 20) + 64) = 2 x (2240 + 64) = 4608 bytes

To that sum, you must add the memory required to hold the data assigned to
each field. If you assign a 25-character string to Address and a 12-character
string to Phone in each element of the 4-by-5 Clients array, you use 1480
bytes for data:

(25+12) characters * 2 bytes per char * 20 elements = 1480 bytes

Add the two and you see that the entire structure consumes 6,088 bytes of
memory.

Example 1 – Memory Allocation for a Structure Array. Compute the
amount of memory that would be required to store the following 6-by-5
structure array having the following four fields on a 32-bit system:

A: 5-by-8-by-6 signed 8-bit integer array
B: 1-by-200 single array
C: 30-by-30 unsigned 16-bit integer array
D: 1-by-27 character array

Construct the array:

A = int8(ones(5,8,6));
B = single(1:500);
C = uint16(magic(30));
D = 'Company Name: The MathWorks';

s = struct('f1', A, 'f2', B, 'f3', C, 'f4', D);

for m=1:6
for n=1:5

s(m,n)=s(1,1);
end

end

11-10

Memory Allocation

Calculate the amount of memory required for the structure itself, and then for
the data it contains:

structure = fields x ((60 x array elements) + 64) =
4 x ((60 x 30) + 64) = 7456 bytes

data = (field1 + field2 + field3 + field4) x array elements =
(240 + 2000 + 1800 + 54) x 30 = 122,820 bytes

Add the two, and then compare your result with the size returned by
MATLAB:

Total bytes calculated for structure s: 7456 + 122,820 = 130,276

whos s
Name Size Bytes Class Attributes

s 6x5 130276 struct

11-11

11 Memory Usage

Memory Management Functions
The following functions can help you to manage memory use while running
the MATLAB software:

• memory displays or returns information about how much memory is
available and how much is used by MATLAB. This includes the following:

- Size of the largest single array MATLAB can create at this time.

- Total size of the virtual address space available for data.

- Total amount of memory used by the MATLAB process for both libraries
and data.

- Available and total Virtual Memory for the MATLAB software process.

- Available system memory, including both physical memory and paging
file.

- Available and the total physical memory (RAM) of the computer.

• whos shows how much memory MATLAB currently has allocated for
variables in the workspace.

• pack saves existing variables to disk, and then reloads them contiguously.
This reduces the chances of running into problems due to memory
fragmentation.

• clear removes variables from memory. One way to increase the amount
of available memory is to periodically clear variables from memory that
you no longer need.

If you use pack and there is still not enough free memory to proceed, you
probably need to remove some of the variables you are no longer using
from memory. Use clear to do this.

• save selectively stores variables to the disk. This is a useful technique
when you are working with large amounts of data. Save data to the disk
periodically, and then use the clear function to remove the saved data
from memory.

• load reloads a data file saved with the save function.

• quit exits MATLAB and returns all allocated memory to the system. This
can be useful on The Open Group UNIX systems, which do not free up

11-12

Memory Management Functions

memory allocated to an application (e.g., MATLAB) until the application
exits.

You can use the save and load functions in conjunction with the quit
command to free memory by:

1 Saving any needed variables with the save function.

2 Quitting MATLAB to free all memory allocated to MATLAB.

3 Starting a new MATLAB session and loading the saved variables back
into the clean MATLAB workspace.

The whos Function
The whos command can give you an idea of the memory used by MATLAB
variables.

A = ones(10,10);
whos

Name Size Bytes Class Attributes
A 10x10 800 double

Note that whos does not include information about

• Memory used by MATLAB (e.g., Sun Java code and plots).

• Memory used for most objects (e.g., time series, custom) .

• Memory for variables not in the calling workspace .

• Shared data copies (e.g., memory for B in >>B=A;) will still have bytes used
listed against it even when it does not use any memory (see the "Be aware
of the Function Argument Passing Model" section earlier).

11-13

11 Memory Usage

Strategies for Efficient Use of Memory

In this section...

“Ways to Reduce the Amount of Memory Required” on page 11-14
“Using Appropriate Data Storage” on page 11-16
“How to Avoid Fragmenting Memory” on page 11-19
“Reclaiming Used Memory” on page 11-21

Ways to Reduce the Amount of Memory Required
The source of many "out of memory" problems often involves analyzing or
processing an existing large set of data such as in a file or a database. This
requires bringing all or part of the data set into the MATLAB software
process. The following techniques deal with minimizing the required memory
during this stage.

Load Only As Much Data As You Need
Only import into MATLAB as much of a large data set as you need for the
problem you are trying to solve. This is not usually a problem when importing
from sources, such as a database where you can explicitly search for elements
matching a query. But this is a common problem with loading large flat text
or binary files. Many users are tempted to try and load the entire file first,
and then process it with MATLAB. Be sure to use the appropriate MATLAB
function to load parts of files.

Text Files. Use the textscan function to access parts of a large text file by
reading only the selected columns and rows. If you specify the number of rows
or a repeat format number with textscan, MATLAB calculates the exact
amount of memory required beforehand.

Binary Files. You can use low-level binary file I/O functions, such as fread,
to access parts of any file that has a known format. For binary files of an
unknown format, try using memory mapping with the memmapfile function.

MAT-Files. Use the whos function with the -file option to preview the file.
This command displays each array in the MAT-file that you specify and the
number of bytes in the array:

11-14

Strategies for Efficient Use of Memory

whos -file session1.mat
Name Size Bytes Class Attributes

S2 1x1 723 struct
x 100x200 72 double sparse
Mat4 4x20 640 double
A 3151872x1 3151872 uint8
Seq 1x912211 912211 int8

If there are large arrays in the MAT-file that you do not need for your current
task, you can selectively import only those variables that you want using load.

HDF Files. You can load parts of HDF files using the hdfread and hdf5read
functions.

Image, Audio, and Video Files. The MATLAB functions that support
loading from these types of files usually require that you import the entire
file. To import portions of the file, use low-level I/O functions such as fread.

Process Data By Blocks
Consider block processing, that is, processing a large data set one section at a
time in a loop. Reducing the size of the largest array in a data set reduces
the size of any copies or temporaries needed. You can use this technique
in either of two ways:

• For a subset of applications that you can break into separate chunks and
process independently.

• For applications that only rely on the state of a previous block, such as
filtering.

Avoid Creating Temporary Arrays
Avoid creating large temporary variables, and also make it a practice to
clear those temporary variables you do use when they are no longer needed.
For example, when you create a large array of zeros, instead of saving to a
temporary variable A, and then converting A to a single:

A = zeros(1e6,1);
As = single(A);

11-15

11 Memory Usage

use just the one command to do both operations:

A = zeros(1e6,1,'single');

Using the repmat function, array preallocation and for loops are other ways
to work on nondouble data without requiring temporary storage in memory.

Use Nested Functions to Pass Fewer Arguments
When working with large data sets, be aware that MATLAB makes a
temporary copy of an input variable if the called function modifies its value.
This temporarily doubles the memory required to store the array, which
causes MATLAB to generate an error if sufficient memory is not available.

One way to use less memory in this situation is to use nested functions. A
nested function shares the workspace of all outer functions, giving the nested
function access to data outside of its usual scope. In the example shown here,
nested function setrowval has direct access to the workspace of the outer
function myfun, making it unnecessary to pass a copy of the variable in the
function call. When setrowval modifies the value of A, it modifies it in the
workspace of the calling function. There is no need to use additional memory
to hold a separate array for the function being called, and there also is no
need to return the modified value of A:

function myfun
A = magic(500);

function setrowval(row, value)
A(row,:) = value;
end

setrowval(400, 0);
disp('The new value of A(399:401,1:10) is')
A(399:401,1:10)
end

Using Appropriate Data Storage
MATLAB provides you with different sizes of data classes, such as double and
uint8, so you do not need to use large classes to store your smaller segments

11-16

Strategies for Efficient Use of Memory

of data. For example, it takes 7,000 KB less memory to store 1,000 small
unsigned integer values using the uint8 class than it does with double.

Use the Appropriate Numeric Class
The numeric class you should use in MATLAB depends on your intended
actions. The default class double gives the best precision, but requires 8 bytes
per element of memory to store. If you intend to perform complicated math
such as linear algebra, you must use a floating-point class such as a double or
single. The single class requires only 4 bytes. There are some limitations
on what you can do with singles, but most MATLAB Math operations are
supported.

If you just need to carry out simple arithmetic and you represent the original
data as integers, you can use the integer classes in MATLAB. The following is
a list of numeric classes, memory requirements (in bytes), and the supported
operations.

Class (Data Type) Bytes Supported Operations

single 4 Most math
double 8 All math
logical 1 Logical/conditional operations
int8, uint8 1 Arithmetic and some simple functions
int16, uint16 2 Arithmetic and some simple functions
int32, uint32 4 Arithmetic and some simple functions
int64, int64 8 Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data
MATLAB arrays (implemented internally as mxArrays) require room to store
meta information about the data in memory, such as type, dimensions, and
attributes. This takes about 80 bytes per array. This overhead only becomes
an issue when you have a large number (e.g., hundreds or thousands) of
small mxArrays (e.g., scalars). The whos command lists the memory used by
variables, but does not include this overhead.

11-17

11 Memory Usage

Because simple numeric arrays (comprising one mxArray) have the least
overhead, you should use them wherever possible. When data is too complex
to store in a simple array (or matrix), you can use other data structures.

Cell arrays are comprised of separate mxArrays for each element. As a result,
cell arrays with many small elements have a large overhead.

Structures require a similar amount of overhead per field (see the
documentation on “Array Headers” on page 11-5 above). Structures with
many fields and small contents have a large overhead and should be avoided.
A large array of structures with numeric scalar fields requires much more
memory than a structure with fields containing large numeric arrays.

Also note that while MATLAB stores numeric arrays in contiguous memory,
this is not the case for structures and cell arrays.

Import Data to the Appropriate MATLAB Class
When reading data from a binary file with fread, it is a common error to
specify only the class of the data in the file, and not the class of the data
MATLAB uses once it is in the workspace. As a result, the default double is
used even if you are reading only 8-bit values. For example,

fid = fopen('large_file_of_uint8s.bin', 'r');
a = fread(fid, 1e3, 'uint8'); % Requires 8k
whos a

Name Size Bytes Class Attributes

a 1000x1 8000 double

a = fread(fid, 1e3, 'uint8=>uint8'); % Requires 1k
whos a

Name Size Bytes Class Attributes

a 1000x1 1000 uint8

Make Arrays Sparse When Possible
If your data contains many zeros, consider using sparse arrays, which store
only nonzero elements. The example below compares the space required for
storage of an array of mainly zeros:

11-18

Strategies for Efficient Use of Memory

A = diag(1e3,1e3); % Full matrix with ones on the diagonal
As = sparse(A) % Sparse matrix with only nonzero elements
whos

Name Size Bytes Class

A 1001x1001 8016008 double array
As 1001x1001 4020 double array (sparse)

You can see that this array requires only approximately 4 KB to be stored as
sparse, but approximately 8 MB as a full matrix. In general, for a sparse
double array with nnz nonzero elements and ncol columns, the memory
required is

• 16 * nnz + 8 * ncol + 8 bytes (on a 64 bit machine)

• 12 * nnz + 4 * ncol + 4 bytes (on a 32 bit machine)

Note that MATLAB does not support all mathematical operations on sparse
arrays.

How to Avoid Fragmenting Memory
MATLAB always uses a contiguous segment of memory to store a numeric
array. As you manipulate this data, however, the contiguous block can become
fragmented. When memory is fragmented, there may be plenty of free space,
but not enough contiguous memory to store a new large variable. Increasing
fragmentation can use significantly more memory than is necessary.

Preallocate Contiguous Memory When Creating Arrays
In the course of a MATLAB session, memory can become fragmented due
to dynamic memory allocation and deallocation. for and while loops that
incrementally increase, or grow, the size of a data structure each time through
the loop can add to this fragmentation as they have to repeatedly find and
allocate larger blocks of memory to store the data.

To make more efficient use of your memory, preallocate a block of memory
large enough to hold the matrix at its final size before entering the loop. When
you preallocate memory for an array, MATLAB reserves sufficient contiguous
space for the entire full-size array at the beginning of the computation. Once

11-19

11 Memory Usage

you have this space, you can add elements to the array without having to
continually allocate new space for it in memory.

For more information on preallocation, see “Preallocating Arrays” on page
10-7.

Allocate Your Larger Arrays First
MATLAB uses a heap method of memory management. It requests memory
from the operating system when there is not enough memory available in the
heap to store the current variables. It reuses memory as long as the size of
the memory segment required is available in the heap.

The following statements can require approximately 4.3 MB of RAM. This is
because MATLAB may not be able to reuse the space previously occupied by
two 1 MB arrays when allocating space for a 2.3 MB array:

a = rand(1e6,1);
b = rand(1e6,1);
clear
c = rand(2.3e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest
vectors first. These statements require only about 2.0 MB of RAM:

c = rand(2.3e6,1);
clear
a = rand(1e6,1);
b = rand(1e6,1);

Long-Term Usage (Windows Systems Only)
On 32-bit Microsoft Windows, the workspace of MATLAB can fragment over
time due to the fact that the Windows memory manager does not return
blocks of certain types and sizes to the operating system. Clearing the
MATLAB workspace does not fix this problem. You can minimize the problem
by allocating the largest variables first. This cannot address, however, the
eventual fragmentation of the workspace that occurs from continual use of
MATLAB over many days and weeks, for example. The only solution to this is
to save your work and restart MATLAB.

11-20

Strategies for Efficient Use of Memory

The pack command, which saves all variables to disk and loads them back,
does not help with this situation.

Reclaiming Used Memory
One simple way to increase the amount of memory you have available is to
clear large arrays that you no longer use.

Save Your Large Data Periodically to Disk
If your program generates very large amounts of data, consider writing the
data to disk periodically. After saving that portion of the data, use the clear
function to remove the variable from memory and continue with the data
generation.

Clear Old Variables from Memory When No Longer Needed
When you are working with a very large data set repeatedly or interactively,
clear the old variable first to make space for the new variable. Otherwise,
MATLAB requires temporary storage of equal size before overriding the
variable. For example,

a = rand(100e6,1) % 800 MB array
a = rand(100e6,1) % New 800 MB array
??? Error using ==> rand
Out of memory. Type HELP MEMORY for your options.

clear a
a = rand(100e6,1) % New 800 MB array

11-21

11 Memory Usage

Resolving “Out of Memory” Errors

In this section...

“General Suggestions for Reclaiming Memory” on page 11-22
“Setting the Process Limit” on page 11-23
“Disabling Java VM on Startup ” on page 11-24
“Increasing System Swap Space” on page 11-25
“Using the 3GB Switch on Windows Systems” on page 11-26
“Freeing Up System Resources on Windows Systems” on page 11-26

General Suggestions for Reclaiming Memory
The MATLAB software generates an Out of Memory message whenever it
requests a segment of memory from the operating system that is larger than
what is currently available. When you see the Out of Memory message,
use any of the techniques discussed under “Strategies for Efficient Use of
Memory” on page 11-14 to help optimize the available memory. If the Out of
Memory message still appears, you can try any of the following:

• Compress data to reduce memory fragmentation.

• If possible, break large matrices into several smaller matrices so that less
memory is used at any one time.

• If possible, reduce the size of your data.

• Make sure that there are no external constraints on the memory accessible
to MATLAB. (On The Open Group UNIX2 systems, use the limit command
to check).

• Increase the size of the swap file. We recommend that you configure your
system with twice as much swap space as you have RAM. See “Increasing
System Swap Space” on page 11-25, below.

• Add more memory to the system.

2. UNIX is a registered trademark of The Open Group in the United States and other
countries.

11-22

Resolving “Out of Memory” Errors

Setting the Process Limit
The platforms and operating systems that MATLAB supports have different
memory characteristics and limitations. In particular, the process limit is the
maximum amount of virtual memory a single process (or application) can
address. On 32-bit systems, this is the most important factor limiting data
set size. The process limit must be large enough for MATLAB to store all of
the data it is to process, plus M code, the MATLAB executable itself, and
additional state information.

Where possible, choose an operating system that maximizes this number, that
is, a 64-bit operating system. The following is a list of MATLAB supported
operating systems and their process limits.

Operating System Process Limit

32-bit Microsoft Windows XP,
Windows Vista™.

2 GB

32-bit Windows XP with 3 GB
boot.ini switch or 32-bit Windows
Vista with increaseuserva set (see
later)

3 GB

32-bit Linux (Linux is a registered
trademark of Linus Torvalds.)

~3 GB

64-bit Windows XP, Apple®
Macintosh OS X, Linux, or Sun
Solaris running 32-bit MATLAB

≤ 4 GB

64-bit Windows XP, Windows Vista,
Linux, or Solaris running 64-bit
MATLAB

8 TB

To verify the current process limit of MATLAB on Windows systems, use
the memory function.

Maximum possible array: 583 MB (6.111e+008 bytes) *
Memory available for all arrays: 1515 MB (1.588e+009 bytes) **
Memory used by MATLAB: 386 MB (4.050e+008 bytes)
Physical Memory (RAM): 2014 MB (2.112e+009 bytes)

11-23

11 Memory Usage

* Limited by contiguous virtual address space available.
** Limited by virtual address space available.

When called with one output variable, the memory function returns or displays
the following values. See the function reference for memory to find out how
to use it with more than one output.

memory Return Value Description

MaxPossibleArrayBytes Size of the largest single array MATLAB can
currently create

MemAvailableAllArrays Total size of the virtual address space available
for data

MemUsedMATLAB Total amount of memory used by the MATLAB
process

View the value against the Total entry in the Virtual Memory section. It is
shown as 2 GB in the table, which is the default on Windows XP systems. On
UNIX systems, see the ulimit command to view and set user limits including
virtual memory.

Disabling Java VM on Startup
On UNIX systems, you can increase the workspace size by approximately
400 MB if you start MATLAB without the Sun Java VM. To do this, use the
command line option -nojvm to start MATLAB. This also increases the size
of the largest contiguous block (and therefore the largest matrix) by about
the same.

Using -nojvm comes with a penalty in that you will lose many features that
rely on the Java software, including the entire development environment.

Starting MATLAB with the -nodesktop option does not save any substantial
amount of memory.

Shutting down other applications and services (e.g., using msconfig on
Windows systems) can help if total system memory is the limiting factor, but
usually process limit (on 32-bit machines) is the main limiting factor.

11-24

Resolving “Out of Memory” Errors

Increasing System Swap Space
The total memory available to applications on your computer is comprised of
physical memory (RAM), plus a page file, or swap file, on disk. The page or
swap file can be very large, even on 32-bit systems (e.g., 16 TB (terabytes) on
32-bit Windows, 512 TB on 64-bit Windows). The operating system allocates
the virtual memory of each process to either physical RAM or to this file,
depending on its needs and those of other processes.

How you set the swap space for your computer depends on what operating
system you are running on.

UNIX Systems
For more information about swap space, type pstat -s at the UNIX command
prompt. For detailed information on changing swap space, ask your system
administrator.

Linux Systems
You can change your swap space by using the mkswap and swapon commands.
For more information on the above commands, type man followed by the
command name at the Linux prompt.

Windows XP Systems
Follow the steps shown here:

1 Right-click the My Computer icon, and select Properties.

2 In the System Properties GUI, select the Advanced tab. In the section
labeled Performance, click the Settings button.

3 In the Performance Options GUI, click the Advanced tab. In the section
labeled Virtual Memory, click the Change button

4 In the Virtual Memory GUI, under Paging file size for selected drive,
you can change the amount of virtual memory.

11-25

11 Memory Usage

Using the 3GB Switch on Windows Systems
Microsoft Windows XP systems can allocate 3 GB (instead of the default 2
GB) to processes, if you set an appropriate switch in the boot.ini file of the
system. The MathWorks recommends that you only do this with Windows XP
SP2 systems or later. This gives an extra 1 GB of virtual memory to MATLAB,
not contiguous with the rest of the memory. This enables you to store more
data, but not larger arrays, as these are limited by contiguous space. This is
mostly beneficial if you have enough RAM (e.g., 3 or 4 GB) to use it.

After setting the switch, confirm the new value of the virtual memory after
restarting your computer and using the memory function.

[userview systemview] = memory;

systemview.VirtualAddressSpace
ans =

Available: 1.6727e+009 % Virtual memory available to MATLAB.
Total: 2.1474e+009 % Total virtual memory

For more documentation on this option, use the following URL:

http://support.microsoft.com/support/kb/articles/Q291/9/88.ASP

Similarly, on machines running Microsoft Windows Vista, you can achieve the
same effect by using the command:

BCDEdit /set increaseuserva 3072

For more documentation on this option, use the following URL:

http://msdn2.microsoft.com/en-us/library/aa906211.aspx

Freeing Up System Resources on Windows Systems
There are no functions implemented to manipulate the way MATLAB handles
Microsoft Windows system resources. Windows systems use these resources
to track fonts, windows, and screen objects. Resources can be depleted by
using multiple figure windows, multiple fonts, or several UI controls. One
way to free up system resources is to close all inactive windows. Windows
system icons still use resources.

11-26

http://support.microsoft.com/support/kb/articles/Q291/9/88.ASP
http://msdn2.microsoft.com/en-us/library/aa906211.aspx

12

Programming Tips

• “Introduction” on page 12-2

• “Command and Function Syntax” on page 12-3

• “Help” on page 12-6

• “Development Environment” on page 12-10

• “M-File Functions” on page 12-12

• “Function Arguments” on page 12-15

• “Program Development” on page 12-18

• “Debugging” on page 12-21

• “Variables” on page 12-25

• “Strings” on page 12-29

• “Evaluating Expressions” on page 12-32

• “MATLAB Path” on page 12-34

• “Program Control” on page 12-38

• “Save and Load” on page 12-42

• “Files and Filenames” on page 12-45

• “Input/Output” on page 12-48

• “Starting MATLAB” on page 12-51

• “Operating System Compatibility” on page 12-52

• “Demos” on page 12-54

• “For More Information” on page 12-55

12 Programming Tips

Introduction
This section is a categorized compilation of tips for the MATLAB programmer.
Each item is relatively brief to help you browse through them and find
information that is useful. Many of the tips include a reference to specific
MATLAB documentation that gives you more complete coverage of the topic.
You can find information on the following topics:

For suggestions on how to improve the performance of your MATLAB
programs, and how to write programs that use memory more efficiently, see
Improving Performance and Memory Usage

12-2

Command and Function Syntax

Command and Function Syntax

In this section...

“Syntax Help” on page 12-3
“Command and Function Syntaxes” on page 12-3
“Command Line Continuation” on page 12-3
“Completing Commands Using the Tab Key” on page 12-4
“Recalling Commands” on page 12-4
“Clearing Commands” on page 12-5
“Suppressing Output to the Screen” on page 12-5

Syntax Help
For help about the general syntax of MATLAB functions and commands, type

help syntax

Command and Function Syntaxes
You can enter MATLAB commands using either a command or function
syntax. It is important to learn the restrictions and interpretation rules for
both.

functionname arg1 arg2 arg3 % Command syntax
functionname('arg1','arg2','arg3') % Function syntax

For more information: See Calling Functions in the MATLAB
Programming Fundamentals documentation.

Command Line Continuation
You can continue most statements to one or more additional lines by
terminating each incomplete line with an ellipsis (...). Breaking down
a statement into a number of lines can sometimes result in a clearer
programming style.

sprintf ('Example %d shows a command coded on %d lines.\n', ...
exampleNumber, ...

12-3

12 Programming Tips

numberOfLines)

Note that you cannot continue an incomplete string to another line.

disp 'This statement attempts to continue a string ...
to another line, resulting in an error.'

For more information: See Entering Long Statements in the MATLAB
Desktop Tools and Development Environment documentation.

Completing Commands Using the Tab Key
You can save some typing when entering commands by entering only the first
few letters of the command, variable, property, etc. followed by the Tab key.
Typing the second line below (with T representing Tab) yields the expanded,
full command shown in the third line:

f = figure;
set(f, 'papTuT,'cT) % Type this line.
set(f, 'paperunits','centimeters') % This is what you get.

If there are too many matches for the string you are trying to complete, you
will get no response from the first Tab. Press Tab again to see all possible
choices:

set(f, 'paTT
PaperOrientation PaperPositionMode PaperType Parent
PaperPosition PaperSize PaperUnits

For more information: See Tab Completion in the Command Window in
the MATLAB Desktop Tools and Development Environment documentation

Recalling Commands
Use any of the following methods to simplify recalling previous commands
to the screen:

• To recall an earlier command to the screen, press the up arrow key one or
more times, until you see the command you want. If you want to modify the
recalled command, you can edit its text before pressing Enter or Return
to execute it.

12-4

Command and Function Syntax

• To recall a specific command by name without having to scroll through your
earlier commands one by one, type the starting letters of the command,
followed by the up arrow key.

• Open the Command History window (View > Command History) to see
all previous commands. Double-click the command you want to execute.

For more information: See Recalling Previous Lines and Command History
Window in the MATLAB Desktop Tools and Development Environment
documentation.

Clearing Commands
If you have typed a command that you then decide not to execute, you can
clear it from the Command Window by pressing the Escape (Esc) key.

Suppressing Output to the Screen
To suppress output to the screen, end statements with a semicolon. This can
be particularly useful when generating large matrices.

A = magic(100); % Create matrix A, but do not display it.

12-5

12 Programming Tips

Help

In this section...

“Using the Help Browser” on page 12-6
“Help on Functions from the Help Browser” on page 12-7
“Help on Functions from the Command Window” on page 12-7
“Topical Help” on page 12-7
“Paged Output” on page 12-8
“Writing Your Own Help” on page 12-8
“Help for Subfunctions and Private Functions” on page 12-9
“Help for Methods and Overloaded Functions” on page 12-9

Using the Help Browser
Open the Help browser from the MATLAB Command Window using one of
the following:

• Click the question mark symbol in the toolbar.

• Select Help > Product Help from the menu.

• Type the word doc at the command prompt.

Some of the features of the Help browser are listed below.

Feature Description

Product Filter Establish which products to find help on.
Contents Look up topics in the Table of Contents.
Index Look up help using the documentation Index.
Search Search the documentation for one or more words.
Demos See what demos are available; run selected demos.
Favorites Save bookmarks for frequently used Help pages.

12-6

Help

For more information: See Finding Information with the Help Browser in
the MATLAB Desktop Tools and Development Environment documentation.

Help on Functions from the Help Browser
To find help on any function from the Help browser, do either of the following:

• Select the Contents tab of the Help browser, open the Contents entry
labeled MATLAB, and find the two subentries shown below. Use one of
these to look up the function you want help on.

- Functions — Categorical List

- Functions — Alphabetical List

• Type doc functionname at the command line.

Help on Functions from the Command Window
Several types of help on functions are available from the Command Window:

• To list all categories that you can request help on from the Command
Window, just type

help

• To see a list of functions for one of these categories, along with a brief
description of each function, type help category. For example,

help datafun

• To get help on a particular function, type help functionname. For example,

help sortrows

Topical Help
In addition to the help on individual functions, you can get help on any of the
following topics by typing help topicname at the command line.

Topic Name Description

arith Arithmetic operators

12-7

12 Programming Tips

Topic Name Description

relop Relational and logical operators
punct Special character operators
slash Arithmetic division operators
paren Parentheses, braces, and bracket operators
precedence Operator precedence
datatypes MATLAB classes, their associated functions, and

operators that you can overload
lists Comma separated lists
strings Character strings
function_handle Function handles and the @ operator
debug Debugging functions
java Using Sun Java from within the MATLAB software.
fileformats A list of readable file formats
changeNotification Microsoft Windows directory change notification

Paged Output
Before displaying a lengthy section of help text or code, put MATLAB into its
paged output mode by typing more on. This breaks up any ensuing display
into pages for easier viewing. Turn off paged output with more off.

Page through the displayed text using the space bar key. Or step through
line by line using Enter or Return. Discontinue the display by pressing
the Q key or Ctrl+C.

Writing Your Own Help
Start each program you write with a section of text providing help on how and
when to use the function. If formatted properly, the MATLAB help function
displays this text when you enter

help functionname

12-8

Help

MATLAB considers the first group of consecutive lines immediately following
the function definition line that begin with % to be the help section for the
function. The first line without % as the left-most character ends the help.

For more information: See Help Text in the MATLAB Desktop Tools and
Development Environment documentation.

Help for Subfunctions and Private Functions
You can write help for subfunctions using the same rules that apply to main
functions. To display the help for the subfunction mysubfun in file myfun.m,
type

help myfun>mysubfun

To display the help for a private function, precede the function name with
private/. To get help on private function myprivfun, type

help private/myprivfun

Help for Methods and Overloaded Functions
You can write help text for object-oriented class methods implemented with
M-files. Display help for the method by typing

help classname/methodname

where the file methodname.m resides in subdirectory @classname.

For example, if you write a plot method for a class named polynom, (where
the plot method is defined in the file @polynom/plot.m), you can display
this help by typing

help polynom/plot

You can get help on overloaded MATLAB functions in the same
way. To display the help text for the eq function as implemented in
matlab/iofun/@serial, type

help serial/eq

12-9

12 Programming Tips

Development Environment

In this section...

“Workspace Browser” on page 12-10
“Using the Find and Replace Utility” on page 12-10
“Commenting Out a Block of Code” on page 12-11
“Creating M-Files from Command History” on page 12-11
“Editing M-Files in EMACS” on page 12-11

Workspace Browser
The Workspace browser is a graphical interface to the variables stored in
the MATLAB base and function workspaces. You can view, modify, save,
load, and create graphics from workspace data using the browser. Select
View > Workspace to open the browser.

To view function workspaces, you need to be in debug mode.

For more information: See MATLAB Workspace in the MATLAB Desktop
Tools and Development Environment documentation.

Using the Find and Replace Utility
Find any word or phrase in a group of files using the Find and Replace utility.
Click View > Current Directory, and then click the binoculars icon at the
top of the Current Directory window.

When entering search text, you do not need to put quotes around a phrase.
In fact, parts of words, like win for windows, will not be found if enclosed in
quotes.

For more information: See Finding and Replacing Text in the Current
File in the MATLAB Desktop Tools and Development Environment
documentation.

12-10

Development Environment

Commenting Out a Block of Code
To comment out a block of text or code within the MATLAB editor,

1 Highlight the block of text you would like to comment out.

2 Holding the mouse over the highlighted text, select Text > Comment (or
Uncomment, to do the reverse) from the toolbar. (You can also get these
options by right-clicking the mouse.)

For more information: See Adding Comments in the MATLAB Desktop
Tools and Development Environment documentation.

Creating M-Files from Command History
If there is part of your current MATLAB session that you would like to put
into an M-file, this is easily done using the Command History window:

1 Open this window by selecting View > Command History.

2 Use Shift+Click or Ctrl+Click to select the lines you want to use.
MATLAB highlights the selected lines.

3 Right-click once, and select Create M-File from the menu that appears.
MATLAB creates a new Editor window displaying the selected code.

Editing M-Files in EMACS
If you use Emacs, you can download editing modes for editing M-files with
GNU-Emacs or with early versions of Emacs from the MATLAB Central Web
site:

http://www.mathworks.com/matlabcentral/

At this Web site, select File Exchange, and then Utilities > Emacs.

For more information: See General Preferences for the Editor/Debugger in
the MATLAB Desktop Tools and Development Environment documentation.

12-11

http://www.mathworks.com/matlabcentral/%0D

12 Programming Tips

M-File Functions

In this section...

“M-File Structure” on page 12-12
“Using Lowercase for Function Names” on page 12-12
“Getting a Function’s Name and Path” on page 12-13
“What M-Files Does a Function Use?” on page 12-13
“Dependent Functions, Built-Ins, Classes” on page 12-14

M-File Structure
An M-File consists of the components shown here:

function [x, y] = myfun(a, b, c) % Function definition line
% H1 line -- A one-line summary of the function's purpose.
% Help text -- One or more lines of help text that explain
% how to use the function. This text is displayed when
% the user types "help functionname".

% The Function body normally starts after the first blank line.
% Comments -- Description (for internal use) of what the
% function does, what inputs are expected, what outputs
% are generated. Typing "help functionname" does not display
% this text.

x = prod(a, b); % Start of Function code

For more information: See Basic Parts of an M-File in the MATLAB
Programming Fundamentals documentation.

Using Lowercase for Function Names
Function names appear in uppercase in MATLAB help text only to make the
help easier to read. In practice, however, it is usually best to use lowercase
when calling functions.

12-12

M-File Functions

For M-file functions, case requirements depend on the case sensitivity of the
operating system you are using. As a rule, naming and calling functions using
lowercase generally makes your M-files more portable from one operating
system to another.

Getting a Function’s Name and Path
To obtain the name of an M-file that is currently being executed, use the
following function in your M-file code.

mfilename

To include the path along with the M-file name, use

mfilename('fullpath')

For more information: See the mfilename function reference page.

What M-Files Does a Function Use?
For a simple display of all M-files referenced by a particular function, follow
the steps below:

1 Type clear functions to clear all functions from memory (see Note below).

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, since you can get different
results when calling the same function with different arguments.

3 Type inmem to display all M-Files that were used when the function ran. If
you want to see what MEX-files were used as well, specify an additional
output, as shown here:

[mfiles, mexfiles] = inmem

Note clear functions does not clear functions locked by mlock. If you
have locked functions, (which you can check using inmem), unlock them with
munlock, and then repeat step 1.

12-13

12 Programming Tips

Dependent Functions, Built-Ins, Classes
For a much more detailed display of dependent function information, use the
depfun function. In addition to M-files, depfun shows which built-ins and
classes a particular function depends on.

12-14

Function Arguments

Function Arguments

In this section...

“Getting the Input and Output Arguments” on page 12-15
“Variable Numbers of Arguments” on page 12-15
“String or Numeric Arguments” on page 12-16
“Passing Arguments in a Structure” on page 12-16
“Passing Arguments in a Cell Array” on page 12-17

Getting the Input and Output Arguments
Use nargin and nargout to determine the number of input and output
arguments in a particular function call. Use nargchk and nargoutchk to
verify that your function is called with the required number of input and
output arguments.

function [x, y] = myplot(a, b, c, d)
disp(nargchk(2, 4, nargin)) % Allow 2 to 4 inputs
disp(nargoutchk(0, 2, nargout)) % Allow 0 to 2 outputs

x = plot(a, b);
if nargin == 4

y = myfun(c, d);
end

Variable Numbers of Arguments
You can call functions with fewer input and output arguments than you have
specified in the function definition, but not more. If you want to call a function
with a variable number of arguments, use the varargin and varargout
function parameters in the function definition.

This function returns the size vector and, optionally, individual dimensions:

function [s, varargout] = mysize(x)
nout = max(nargout, 1) - 1;
s = size(x);
for k = 1:nout

12-15

12 Programming Tips

varargout(k) = {s(k)};
end

Try calling it with

[s, rows, cols] = mysize(rand(4, 5))

String or Numeric Arguments
If you are passing only string arguments into a function, you can use
MATLAB command syntax. All arguments entered in command syntax are
interpreted as strings.

strcmp string1 string1
ans =

1

When passing numeric arguments, it is best to use function syntax unless you
want the number passed as a string. The right-hand example below passes
the number 75 as the string, '75'.

isnumeric(75) isnumeric 75
ans = ans =

1 0

For more information: See “Command vs. Function Syntax” on page 3-25
in the MATLAB Programming Fundamentals documentation.

Passing Arguments in a Structure
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure and pass the
structure. Make each input you want to pass a separate field in the structure
argument, using descriptive names for the fields.

Structures allow you to change the number, contents, or order of the
arguments without having to modify the function. They can also be useful
when you have a number of functions that need similar information.

12-16

Function Arguments

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The disadvantage over
structures is that you do not have field names to describe each variable. The
advantage is that cell arrays are referenced by index, allowing you to loop
through a cell array and access each argument passed in or out of the function.

12-17

12 Programming Tips

Program Development

In this section...

“Planning the Program” on page 12-18
“Using Pseudo-Code” on page 12-18
“Selecting the Right Data Structures” on page 12-18
“General Coding Practices” on page 12-19
“Naming a Function Uniquely” on page 12-19
“The Importance of Comments” on page 12-19
“Coding in Steps” on page 12-20
“Making Modifications in Steps” on page 12-20
“Functions with One Calling Function” on page 12-20
“Testing the Final Program” on page 12-20

Planning the Program
When planning how to write a program, take the problem you are trying
to solve and break it down into a series of smaller, independent tasks.
Implement each task as a separate function. Try to keep functions fairly
short, each having a single purpose.

Using Pseudo-Code
You may find it helpful to write the initial draft of your program in a
structured format using your own natural language. This pseudo-code is often
easier to think through, review, and modify than using a formal programming
language, yet it is easily translated into a programming language in the next
stage of development.

Selecting the Right Data Structures
Look at what classes and data structures are available to you in MATLAB and
determine which of those best fit your needs in storing and passing your data.

12-18

Program Development

For more information: see Chapter 1, “Classes (Data Types)” in the
Programming Fundamentals documentation.

General Coding Practices
A few suggested programming practices:

• Use descriptive function and variable names to make your code easier to
understand.

• Order subfunctions alphabetically in an M-file to make them easier to find.

• Precede each subfunction with a block of help text describing what that
subfunction does. This not only explains the subfunctions, but also helps
to visually separate them.

• Do not extend lines of code beyond the 80th column. Otherwise, it will be
hard to read when you print it out.

• Use full Handle Graphics property and value names. Abbreviated names
are often allowed, but can make your code unreadable. They also could be
incompatible in future releases of MATLAB.

Naming a Function Uniquely
To avoid choosing a name for a new function that might conflict with a name
already in use, check for any occurrences of the name using this command:

which -all functionname

For more information: See the which function reference page.

The Importance of Comments
Be sure to document your programs well to make it easier for you or someone
else to maintain them. Add comments generously, explaining each major
section and any smaller segments of code that are not obvious. You can add
a block of comments as shown here.

%---
% This function computes the ... <and so on>
%---

12-19

12 Programming Tips

For more information: See Comments in the MATLAB Programming
Fundamentals documentation.

Coding in Steps
Do not try to write the entire program all at once. Write a portion of it, and
then test that piece out. When you have that part working the way you want,
then write the next piece, and so on. It’s much easier to find programming
errors in a small piece of code than in a large program.

Making Modifications in Steps
When making modifications to a working program, do not make widespread
changes all at one time. It’s better to make a few small changes, test and
debug, make a few more changes, and so on. Tracking down a difficult bug
in the small section that you’ve changed is much easier than trying to find it
in a huge block of new code.

Functions with One Calling Function
If you have a function that is called by only one other function, put it in the
same M-file as the calling function, making it a subfunction.

For more information: See Subfunctions in the MATLAB Programming
Fundamentals documentation.

Testing the Final Program
One suggested practice for testing a new program is to step through the
program in the MATLAB debugger while keeping a record of each line that
gets executed on a printed copy of the program. Use different combinations of
inputs until you have observed that every line of code is executed at least once.

12-20

Debugging

Debugging

In this section...

“The MATLAB Debug Functions” on page 12-21
“More Debug Functions” on page 12-21
“The MATLAB Graphical Debugger” on page 12-22
“A Quick Way to Examine Variables” on page 12-22
“Setting Breakpoints from the Command Line” on page 12-23
“Finding Line Numbers to Set Breakpoints” on page 12-23
“Stopping Execution on an Error or Warning” on page 12-23
“Locating an Error from the Error Message” on page 12-23
“Using Warnings to Help Debug” on page 12-24
“Making Code Execution Visible” on page 12-24
“Debugging Scripts” on page 12-24

The MATLAB Debug Functions
For a brief description of the main debug functions in MATLAB, type

help debug

For more information: See Debugging Process and Features in the
MATLAB Desktop Tools and Development Environment documentation.

More Debug Functions
Other functions you may find useful in debugging are listed below.

Function Description

echo Display function or script code as it executes.
disp Display specified values or messages.
sprintf,
fprintf

Display formatted data of different types.

12-21

12 Programming Tips

Function Description

whos List variables in the workspace.
size Show array dimensions.
keyboard Interrupt program execution and allow input from

keyboard.
return Resume execution following a keyboard

interruption.
warning Display specified warning message.
error Display specified error message.
lasterr Return error message that was last issued.
lasterror Return last error message and related information.
lastwarn Return warning message that was last issued.

The MATLAB Graphical Debugger
Learn to use the MATLAB graphical debugger. You can view the function
and its calling functions as you debug, set and clear breakpoints, single-step
through the program, step into or over called functions, control visibility into
all workspaces, and find and replace strings in your files.

Start out by opening the file you want to debug using File > Open or the
open function. Use the debugging functions available on the toolbar and
pull-down menus to set breakpoints, run or step through the program, and
examine variables.

For more information: See Debugging Process and Features in the
MATLAB Desktop Tools and Development Environment documentation.

A Quick Way to Examine Variables
To see the value of a variable from the Editor/Debugger window, hold the
mouse cursor over the variable name for a second or two. You will see the
value of the selected variable displayed.

12-22

Debugging

Setting Breakpoints from the Command Line
You can set breakpoints with dbstop in any of the following ways:

• Break at a specific M-file line number.

• Break at the beginning of a specific subfunction.

• Break at the first executable line in an M-file.

• Break when a warning, or error, is generated.

• Break if any infinite or NaN values are encountered.

For more information: See Setting Breakpoints in the MATLAB Desktop
Tools and Development Environment documentation.

Finding Line Numbers to Set Breakpoints
When debugging from the command line, a quick way to find line numbers for
setting breakpoints is to use dbtype. The dbtype function displays all or part
of an M-file, also numbering each line. To display delaunay.m, use

dbtype delaunay

To display only lines 35 through 41, use

dbtype delaunay 35:41

Stopping Execution on an Error or Warning
Use dbstop if error to stop program execution on any error and enter
debug mode. Use warning debug to stop execution on any warning and enter
debug mode.

For more information: See Backtrace and Verbose Modes in the MATLAB
Programming Fundamentals documentation.

Locating an Error from the Error Message
Click on the underlined text in an error message, and MATLAB opens the
M-file being executed in its editor and places the cursor at the point of error.

12-23

12 Programming Tips

For more information: See Finding Errors, Debugging, and Correcting
M-Files in the MATLAB Desktop Tools and Development Environment
documentation.

Using Warnings to Help Debug
You can detect erroneous or unexpected behavior in your programs by
inserting warning messages that MATLAB will display under the conditions
you specify. See the section on Warning Control in the MATLAB Programming
Fundamentals documentation to find out how to selectively enable warnings.

For more information: See the warning function reference page.

Making Code Execution Visible
An easy way to see the end result of a particular line of code is to edit the
program and temporarily remove the terminating semicolon from that line.
Then, run your program and the evaluation of that statement is displayed
on the screen.

For more information: See Finding Errors, Debugging, and Correcting
M-Files in the MATLAB Desktop Tools and Development Environment
documentation.

Debugging Scripts
Scripts store their variables in a workspace that is shared with the caller of
the script. So, when you debug a script from the command line, the script
uses variables from the base workspace. To avoid errors caused by workspace
sharing, type clear all before starting to debug your script to clear the
base workspace.

12-24

Variables

Variables

In this section...

“Rules for Variable Names” on page 12-25
“Making Sure Variable Names Are Valid” on page 12-25
“Do Not Use Function Names for Variables” on page 12-26
“Checking for Reserved Keywords” on page 12-26
“Avoid Using i and j for Variables” on page 12-27
“Avoid Overwriting Variables in Scripts” on page 12-27
“Persistent Variables” on page 12-27
“Protecting Persistent Variables” on page 12-27
“Global Variables” on page 12-28

Rules for Variable Names
Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables. Also note that variable names are case sensitive.

N = namelengthmax
N =

63

For more information: See Naming Variables in the MATLAB
Programming Fundamentals documentation.

Making Sure Variable Names Are Valid
Before using a new variable name, you can check to see if it is valid with the
isvarname function. Note that isvarname does not consider names longer
than namelengthmax characters to be valid.

For example, the following name cannot be used for a variable since it begins
with a number.

12-25

12 Programming Tips

isvarname 8thColumn
ans =

0

For more information: See Naming Variables in the MATLAB
Programming Fundamentals documentation.

Do Not Use Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name. If you do define a variable with a function name,
you will not be able to call that function until you clear the variable from
memory. (If it’s a MATLAB built-in function, then you will still be able to call
that function but you must do so using builtin.)

To test whether a proposed variable name is already used as a function
name, use

which -all name

For more information: See Potential Conflict with Function Names in the
MATLAB Programming Fundamentals documentation.

Checking for Reserved Keywords
MATLAB reserves certain keywords for its own use and does not allow you
to override them. Attempts to use these words may result in any one of a
number of error messages, some of which are shown here:

Error: Expected a variable, function, or constant, found "=".
Error: "End of Input" expected, "case" found.
Error: Missing operator, comma, or semicolon.
Error: "identifier" expected, "=" found.

Use the iskeyword function with no input arguments to list all reserved
words.

12-26

Variables

Avoid Using i and j for Variables
MATLAB uses the characters i and j to represent imaginary units. Avoid
using i and j for variable names if you intend to use them in complex
arithmetic.

If you want to create a complex number without using i and j, you can use
the complex function.

Avoid Overwriting Variables in Scripts
MATLAB scripts store their variables in a workspace that is shared with
the caller of the script. When called from the command line, they share the
base workspace. When called from a function, they share that function’s
workspace. If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

For more information: See M-File Scripts in the MATLAB Programming
Fundamentals documentation.

Persistent Variables
To get the equivalent of a static variable in MATLAB, use persistent.
When you declare a variable to be persistent within a function, its value is
retained in memory between calls to that function. Unlike global variables,
persistent variables are known only to the function in which they are
declared.

For more information: See Persistent Variables in the MATLAB
Programming Fundamentals documentation.

Protecting Persistent Variables
You can inadvertently clear persistent variables from memory by either
modifying the function in which the variables are defined, or by clearing the
function with one of the following commands:

clear all
clear functions

12-27

12 Programming Tips

Locking the M-file in memory with mlock prevents any persistent variables
defined in the file from being reinitialized.

Global Variables
Use global variables sparingly. The global workspace is shared by all of
your functions and also by your interactive MATLAB session. The more
global variables you use, the greater the chances of unintentionally reusing a
variable name, thus leaving yourself open to having those variables change in
value unexpectedly. This can be a difficult bug to track down.

For more information: See Global Variables in the MATLAB Programming
Fundamentals documentation.

12-28

Strings

Strings

In this section...

“Creating Strings with Concatenation” on page 12-29
“Comparing Methods of Concatenation” on page 12-29
“Store Arrays of Strings in a Cell Array” on page 12-30
“Converting Between Strings and Cell Arrays” on page 12-30
“Search and Replace Using Regular Expressions” on page 12-31

Creating Strings with Concatenation
Strings are often created by concatenating smaller elements together (e.g.,
strings, values, etc.). Two common methods of concatenating are to use the
MATLAB concatenation operator ([]) or the sprintf function. The second
and third line below illustrate both of these methods. Both lines give the
same result:

numChars = 28;
s = ['There are ' int2str(numChars) ' characters here']
s = sprintf('There are %d characters here', numChars)

For more information: See “Creating Character Arrays” on page 1-39
and Converting from Numeric to String in the MATLAB Programming
Fundamentals documentation.

Comparing Methods of Concatenation
When building strings with concatenation, sprintf is often preferable to []
because

• It is easier to read, especially when forming complicated expressions

• It gives you more control over the output format

• It often executes more quickly

You can also concatenate using the strcat function, However, for simple
concatenations, sprintf and [] are faster.

12-29

12 Programming Tips

Store Arrays of Strings in a Cell Array
It is usually best to store an array of strings in a cell array instead of a
character array, especially if the strings are of different lengths. Strings in
a character array must be of equal length, which often requires padding the
strings with blanks. This is not necessary when using a cell array of strings
that has no such requirement.

The cellRecord below does not require padding the strings with spaces:

cellRecord = {'Allison Jones'; 'Development'; 'Phoenix'};

For more information: See Cell Arrays of Strings in the MATLAB
Programming Fundamentals documentation.

Converting Between Strings and Cell Arrays
You can convert between standard character arrays and cell arrays of strings
using the cellstr and char functions:

charRecord = ['Allison Jones'; 'Development '; ...
'Phoenix '];

cellRecord = cellstr(charRecord);

Also, a number of the MATLAB string operations can be used with either
character arrays, or cell arrays, or both:

cellRecord2 = {'Brian Lewis'; 'Development'; 'Albuquerque'};
strcmp(charRecord, cellRecord2)
ans =

0
1
0

For more information: See Converting to a Cell Array of Strings
and “String Comparisons” on page 1-59 in the MATLAB Programming
Fundamentals documentation.

12-30

Strings

Search and Replace Using Regular Expressions
Using regular expressions in MATLAB offers a very versatile way of searching
for and replacing characters or phrases within a string. See the help on these
functions for more information.

Function Description

regexp Match regular expression.
regexpi Match regular expression, ignoring case.
regexprep Replace string using regular expression.

For more information: See “Regular Expressions” on page 2-59 in the
MATLAB Programming Fundamentals documentation.

12-31

12 Programming Tips

Evaluating Expressions

In this section...

“Find Alternatives to Using eval” on page 12-32
“Assigning to a Series of Variables” on page 12-32
“Short-Circuit Logical Operators” on page 12-33
“Changing the Counter Variable within a for Loop” on page 12-33

Find Alternatives to Using eval
While the eval function can provide a convenient solution to certain
programming challenges, it is best to limit its use. The main reason is that
code that uses eval is often difficult to read and hard to debug. A second
reason is that eval statements cannot always be translated into C or C++
code by the MATLAB Compiler.

If you are evaluating a function, it is more efficient to use feval than eval.
The feval function is made specifically for this purpose and is optimized to
provide better performance.

For more information: See MATLAB Technical Note 1103, “What Is the
EVAL Function, When Should I Use It, and How Can I Avoid It?” at URL
http://www.mathworks.com/support/tech-notes/1100/1103.html.

Assigning to a Series of Variables
One common pattern for creating variables is to use a variable name suffixed
with a number (e.g., phase1, phase2, phase3, etc.). We recommend using a
cell array to build this type of variable name series, as it makes code more
readable and executes more quickly than some other methods. For example:

for k = 1:800
phase{k} = expression;

end

12-32

http://www.mathworks.com/support/tech-notes/1100/1103.html

Evaluating Expressions

Short-Circuit Logical Operators
MATLAB has logical AND and OR operators (&& and ||) that enable you to
partially evaluate, or short-circuit, logical expressions. Short-circuit operators
are useful when you want to evaluate a statement only when certain
conditions are satisfied.

In this example, MATLAB does not execute the function myfun unless its
M-file exists on the current path.

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

For more information: See “Short-Circuit Operators” on page 2-31 in the
MATLAB Programming Fundamentals documentation.

Changing the Counter Variable within a for Loop
You cannot change the value of the loop counter variable (e.g., the variable
k in the example below) in the body of a for loop. For example, this loop
executes just 10 times, even though k is set back to 1 on each iteration.

for k = 1:10
fprintf('Pass %d\n', k)
k = 1;

end

Although MATLAB does allow you to use a variable of the same name as the
loop counter within a loop, this is not a recommended practice.

12-33

12 Programming Tips

MATLAB Path

In this section...

“Precedence Rules” on page 12-34
“File Precedence” on page 12-35
“Adding a Directory to the Search Path” on page 12-35
“Handles to Functions Not on the Path” on page 12-35
“Making Toolbox File Changes Visible to MATLAB” on page 12-36
“Making Nontoolbox File Changes Visible to MATLAB” on page 12-37
“Change Notification on Windows” on page 12-37

Precedence Rules
When MATLAB is given a name to interpret, it determines its usage by
checking the name against each of the entities listed below, and in the order
shown:

1 Variable

2 Subfunction

3 Private function

4 Class constructor

5 Overloaded method

6 M-file in the current directory

7 M-file on the path, or MATLAB built-in function

If you have two or more M-files on the path that have the same name,
MATLAB selects the function that has its M-file in the directory closest to the
beginning of the path string.

For more information: See “Function Precedence Order” on page 3-35 in
the MATLAB Programming Fundamentals documentation.

12-34

MATLAB® Path

File Precedence
If you refer to a file by its filename only (leaving out the file extension), and
there is more than one file of this name in the directory, MATLAB selects the
file to use according to the following precedence:

1 MEX-file

2 MDL-file (Simulink model)

3 P-Code file

4 M-file

For more information: See “Multiple Implementation Types” on page 3-37
in the MATLAB Programming Fundamentals documentation.

Adding a Directory to the Search Path
To add a directory to the search path, use either of the following:

• At the toolbar, select File > Set Path.

• At the command line, use the addpath function.

You can also add a directory and all of its subdirectories in one operation
by either of these means. To do this from the command line, use genpath
together with addpath. The online help for the genpath function shows how
to do this.

This example adds /control and all of its subdirectories to the MATLAB path:

addpath(genpath('K:/toolbox/control'))

For more information: See Search Path in the MATLAB Desktop Tools and
Development Environment documentation.

Handles to Functions Not on the Path
You cannot create function handles to functions that are not on the MATLAB
path. But you can achieve essentially the same thing by creating the handles
through a script file placed in the same off-path directory as the functions.

12-35

12 Programming Tips

If you then run the script, using run path/script, you will have created
the handles that you need.

For example,

1 Create a script in this off-path directory that constructs function handles
and assigns them to variables. That script might look something like this:

File E:/testdir/createFhandles.m
fhset = @setItems
fhsort = @sortItems
fhdel = @deleteItem

2 Run the script from your current directory to create the function handles:

run E:/testdir/createFhandles

3 You can now execute one of the functions by means of its handle.

fhset(item, value)

Making Toolbox File Changes Visible to MATLAB
Unlike functions in user-supplied directories, M-files (and MEX-files) in the
matlabroot/toolbox directories are not time-stamp checked, so MATLAB
does not automatically see changes to them. If you modify one of these
files, and then rerun it, you may find that the behavior does not reflect the
changes that you made. This is most likely because MATLAB is still using the
previously loaded version of the file.

To force MATLAB to reload a function from disk, you need to explicitly clear
the function from memory using clear functionname. Note that there are
rare cases where clear will not have the desired effect, (for example, if the
file is locked, or if it is a class constructor and objects of the given class exist
in memory).

Similarly, MATLAB does not automatically detect the presence of new files
in matlabroot/toolbox directories. If you add (or remove) files from these
directories, use rehash toolbox to force MATLAB to see your changes.
Note that if you use the MATLAB Editor to create files, these steps are
unnecessary, as the Editor automatically informs MATLAB of such changes.

12-36

MATLAB® Path

Making Nontoolbox File Changes Visible to MATLAB
For M-files outside of the toolbox directories, MATLAB sees the changes made
to these files by comparing timestamps and reloads any file that has changed
the next time you execute the corresponding function.

If MATLAB does not see the changes you make to one of these files, try
clearing the old copy of the function from memory using clear functionname.
You can verify that MATLAB has cleared the function using inmem to list all
functions currently loaded into memory.

Change Notification on Windows
If MATLAB, running on Windows, is unable to see new files or changes you
have made to an existing file, the problem may be related to operating system
change notification handles.

Type the following for more information:

help changeNotification
help changeNotificationAdvanced

12-37

12 Programming Tips

Program Control

In this section...

“Using break, continue, and return” on page 12-38
“Using switch Versus if” on page 12-39
“MATLAB case Evaluates Strings” on page 12-39
“Multiple Conditions in a case Statement” on page 12-39
“Implicit Break in switch-case” on page 12-39
“Variable Scope in a switch” on page 12-40
“Catching Errors with try-catch” on page 12-40
“Nested try-catch Blocks” on page 12-41
“Forcing an Early Return from a Function” on page 12-41

Using break, continue, and return
It’s easy to confuse the break, continue, and return functions as they are
similar in some ways. Make sure you use these functions appropriately.

Function Where to Use It Description

break for or while loops Exits the loop in which it
appears. In nested loops,
control passes to the next
outer loop.

continue for or while loops Skips any remaining
statements in the current
loop. Control passes to next
iteration of the same loop.

return Anywhere Immediately exits the
function in which it appears.
Control passes to the caller
of the function.

12-38

Program Control

Using switch Versus if
It is possible, but usually not advantageous, to implement switch-case
statements using if-elseif instead. See pros and cons in the table.

switch-case Statements if-elseif Statements

Easier to read. Can be difficult to read.
Can compare strings of different
lengths.

You need strcmp to compare strings
of different lengths.

Test for equality only. Test for equality or inequality.

MATLAB case Evaluates Strings
A useful difference between switch-case statements in MATLAB and C is
that you can specify string values in MATLAB case statements, which you
cannot do in C.

switch(method)
case 'linear'

disp('Method is linear')
case 'cubic'

disp('Method is cubic')
end

Multiple Conditions in a case Statement
You can test against more than one condition with switch. The first case
below tests for either a linear or bilinear method by using a cell array
in the case statement.

switch(method)
case {'linear', 'bilinear'}

disp('Method is linear or bilinear')
case (<and so on>)

end

Implicit Break in switch-case
In C, if you do not end each case with a break statement, code execution
falls through to the following case. In MATLAB, case statements do not fall

12-39

12 Programming Tips

through; only one case may execute. Using break within a case statement is
not only unnecessary, it is also invalid and generates a warning.

In this example, if result is 52, only the first disp statement executes, even
though the second is also a valid match:

switch(result)
case 52

disp('result is 52')
case {52, 78}

disp('result is 52 or 78')
end

Variable Scope in a switch
Since MATLAB executes only one case of any switch statement, variables
defined within one case are not known in the other cases of that switch
statement. The same holds true for if-elseif statements.

In these examples, you get an error when choice equals 2, because x is
undefined.

-- SWITCH-CASE -- -- IF-ELSEIF --
switch choice

case 1 if choice == 1
x = -pi:0.01:pi; x = -pi:0.01:pi;

case 2 elseif choice == 2
plot(x, sin(x)); plot(x, sin(x));

end end

Catching Errors with try-catch
When you have statements in your code that could possibly generate
unwanted results, put those statements into a try-catch block that will catch
any errors and handle them appropriately.

The example below shows a try-catch block within a function that multiplies
two matrices. If a statement in the try segment of the block fails, control
passes to the catch segment. In this case, the catch statements check
the error message that was issued (returned by lasterr) and respond
appropriately.

12-40

Program Control

try
X = A * B

catch
errmsg = lasterr;
if(strfind(errmsg, 'Inner matrix dimensions'))

disp('** Wrong dimensions for matrix multiply')
end

For more information: See “The try-catch Statement” on page 8-17 in the
MATLAB Programming Fundamentals documentation.

Nested try-catch Blocks
You can also nest try-catch blocks, as shown here. You can use this to
attempt to recover from an error caught in the first try section:

try
statement1 % Try to execute statement1

catch
try

statement2 % Attempt to recover from error
catch

disp 'Operation failed' % Handle the error
end

end

Forcing an Early Return from a Function
To force an early return from a function, place a return statement in the
function at the point where you want to exit. For example,

if <done>
return

end

12-41

12 Programming Tips

Save and Load

In this section...

“Saving Data from the Workspace” on page 12-42
“Loading Data into the Workspace” on page 12-42
“Viewing Variables in a MAT-File” on page 12-43
“Appending to a MAT-File” on page 12-43
“Save and Load on Startup or Quit” on page 12-44
“Saving to an ASCII File” on page 12-44

Saving Data from the Workspace
To save data from your workspace, you can do any of the following:

• Copy from the MATLAB Command Window and paste into a text file.

• Record part of your session in a diary file, and then edit the file in a text
editor.

• Save to a binary or ASCII file using the save function.

• Save spreadsheet, scientific, image, or audio data with appropriate function.

• Save to a file using low-level file I/O functions (fwrite, fprintf, ...).

For more information: See Saving the Current Workspace in the MATLAB
Desktop Tools and Development Environment documentation, and “Using
the diary Function to Export Data” on page 6-47 and “Using Low-Level File
I/O Functions” on page 6-67 in the MATLAB Programming Fundamentals
documentation.

Loading Data into the Workspace
Similarly, to load new or saved data into the workspace, you can do any of
the following:

• Enter or paste data at the command line.

• Create a script file to initialize large matrices or data structures.

12-42

Save and Load

• Read a binary or ASCII file using load.

• Load spreadsheet, scientific, image, or audio data with appropriate
function.

• Load from a file using low-level file I/O functions (fread, fscanf, ...).

For more information: See Loading a Saved Workspace and Importing
Data in the MATLAB Development Environment documentation, and “Using
Low-Level File I/O Functions” on page 6-67 in the MATLAB Programming
Fundamentals documentation.

Viewing Variables in a MAT-File
To see what variables are saved in a MAT-file, use who or whos as shown
here (the .mat extension is not required). who returns a cell array and whos
returns a structure array.

mydataVariables = who('-file', 'mydata.mat');

Appending to a MAT-File
To save additional variables to an existing MAT-file, use

save matfilename -append

Any variables you save that do not yet exist in the MAT-file are added to
the file. Any variables you save that already exist in the MAT-file overwrite
the old values.

Note Saving with the -append switch does not append additional elements to
an array that is already saved in a MAT-file. See the example below.

In this example, the second save operation does not concatenate new elements
to vector A, (making A equal to [1 2 3 4 5 6 7 8]) in the MAT-file. Instead,
it replaces the 5 element vector, A, with a 3 element vector, also retaining all
other variables that were stored on the first save operation.

A = [1 2 3 4 5]; B = 12.5; C = rand(4);
save savefile;

12-43

12 Programming Tips

A = [6 7 8];
save savefile A -append;

Save and Load on Startup or Quit
You can automatically save your variables at the end of each MATLAB session
by creating a finish.m file to save the contents of your base workspace every
time you quit MATLAB. Load these variables back into your workspace at
the beginning of each session by creating a startup.m file that uses the load
function to load variables from your MAT-file.

For more information: See the startup and finish function reference
pages.

Saving to an ASCII File
When you save matrix data to an ASCII file using save -ascii, MATLAB
combines the individual matrices into one collection of numbers. Variable
names are not saved. If this is not acceptable for your application, use
fprintf to store your data instead.

For more information: See “Exporting Delimited ASCII Data Files” on
page 6-46.

12-44

Files and Filenames

Files and Filenames

In this section...

“Naming M-files” on page 12-45
“Naming Other Files” on page 12-45
“Passing Filenames as Arguments” on page 12-46
“Passing Filenames to ASCII Files” on page 12-46
“Determining Filenames at Run-Time” on page 12-46
“Returning the Size of a File” on page 12-46

Naming M-files
M-file names must start with an alphabetic character, may contain any
alphanumeric characters or underscores, and must be no longer than
the maximum allowed M-file name length (returned by the function
namelengthmax).

N = namelengthmax
N =

63

Since variables must obey similar rules, you can use the isvarname function
to check whether a filename (minus its .m file extension) is valid for an M-file.

isvarname mfilename

Naming Other Files
The names of other files that MATLAB interacts with (e.g., MAT, MEX, and
MDL-files) follow the same rules as M-files, but may be of any length.

Depending on your operating system, you may be able to include certain
nonalphanumeric characters in your filenames. Check your operating system
manual for information on valid filename restrictions.

12-45

12 Programming Tips

Passing Filenames as Arguments
In MATLAB commands, you can specify a filename argument using the
MATLAB command or function syntax. For example, either of the following
are acceptable. (The .mat file extension is optional for save and load).

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax.

savedData = load('mydata.mat')

Passing Filenames to ASCII Files
ASCII files are specified as follows. Here, the file extension is required.

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time
There are several ways that your function code can work on specific files
without you having to hardcode their filenames into the program. You can

• Pass the filename in as an argument

function myfun(datafile)

• Prompt for the filename using the input function

filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function

[filename, pathname] =
uigetfile('*.mat', 'Select MAT-file');

For more information: See the input and uigetfile function reference
pages.

Returning the Size of a File
Two ways to have your program determine the size of a file are shown here.

12-46

Files and Filenames

-- METHOD #1 -- -- METHOD #2 --
s = dir('myfile.dat'); fid = fopen('myfile.dat');
filesize = s.bytes fseek(fid, 0, 'eof');

filesize = ftell(fid)
fclose(fid);

The dir function also returns the filename (s.name), last modification date
(s.date), and whether or not it’s a directory (s.isdir).

(The second method requires read access to the file.)

For more information: See the fopen, fseek, ftell, and fclose function
reference pages.

12-47

12 Programming Tips

Input/Output

In this section...

“File I/O Function Overview” on page 12-48
“Common I/O Functions” on page 12-48
“Readable File Formats” on page 12-49
“Using the Import Wizard” on page 12-49
“Loading Mixed Format Data” on page 12-49
“Reading Files with Different Formats” on page 12-50
“Interactive Input into Your Program” on page 12-50

For more information and examples on importing and exporting data, see
Technical Note 1602:

http://www.mathworks.com/support/tech-notes/1600/1602.html

File I/O Function Overview
For a good overview of MATLAB file I/O functions, use the online “Functions
— Categorical List” reference. In the Help browser Contents, select
MATLAB > Functions — Categorical List, and then click File I/O.

Common I/O Functions
The most commonly used, high-level, file I/O functions in MATLAB are save
and load. For help on these, type doc save or doc load.

Functions for I/O to text files with delimited values are textscan, dlmread,
dlmwrite. Functions for I/O to text files with comma-separated values are
csvread, csvwrite.

For more information: See Text Files in the MATLAB “Functions —
Categorical List” reference documentation.

12-48

http://www.mathworks.com/support/tech-notes/1600/1602.html

Input/Output

Readable File Formats
Type doc fileformats to see a list of file formats that MATLAB can read,
along with the associated MATLAB functions.

Using the Import Wizard
A quick method of importing text or binary data from a file (e.g., Excel files)
is to use the MATLAB Import Wizard. Open the Import Wizard with the
command, uiimport filename or by selecting File > Import Data at the
Command Window.

Specify or browse for the file containing the data you want to import and
you will see a preview of what the file contains. Select the data you want
and click Finish.

For more information: See “Using the Import Wizard” on page 6-11 in the
MATLAB Programming Fundamentals documentation.

Loading Mixed Format Data
To load data that is in mixed formats, use textscan instead of load. The
textscan function lets you specify the format of each piece of data.

If the first line of file mydata.dat is

Sally 12.34 45

Read the first line of the file as a free format file using the % format:

fid = fopen('mydata.dat');
c = textscan(fid, '%s %f %d', 1);
fclose(fid);

returns

c =
{1x1 cell} [12.3400] [45]

12-49

12 Programming Tips

Reading Files with Different Formats
Attempting to read data from a file that was generated on a different platform
may result in an error because the binary formats of the platforms may differ.
Using the fopen function, you can specify a machine format when you open
the file to avoid these errors.

Interactive Input into Your Program
Your program can accept interactive input from users during execution. Use
the input function to prompt the user for input, and then read in a response.
When executed, input causes the program to display your prompt, pause
while a response is entered, and then resume when the Enter key is pressed.

12-50

Starting MATLAB®

Starting MATLAB

Getting MATLAB to Start Up Faster
Here are some things that you can do to make MATLAB start up faster.

• Make sure toolbox path caching is enabled.

• Make sure that the system on which MATLAB is running has enough RAM.

• Choose only the windows you need in the MATLAB desktop.

• Close the Help browser before exiting MATLAB. When you start your next
session, MATLAB will not open the Help browser, and thus will start faster.

• If disconnected from the network, check the LM_LICENSE_FILE variable.
See http://www.mathworks.com/support/solutions/data/1-17VEB.html for a
more detailed explanation.

For more information: See Toolbox Path Caching in MATLAB in the
MATLAB Desktop Tools and Development Environment documentation.

12-51

http://www.mathworks.com/support/solutions/data/1-17VEB.html

12 Programming Tips

Operating System Compatibility

In this section...

“Executing O/S Commands from MATLAB” on page 12-52
“Searching Text with grep” on page 12-52
“Constructing Paths and Filenames” on page 12-52
“Finding the MATLAB Root Directory” on page 12-53
“Temporary Directories and Filenames” on page 12-53

Executing O/S Commands from MATLAB
To execute a command from your operating system prompt without having to
exit MATLAB, precede the command with the MATLAB ! operator.

On Windows, you can add an ampersand (&) to the end of the line to make the
output appear in a separate window.

For more information: See Running External Programs in the MATLAB
Desktop Tools and Development Environment documentation, and the system
and dos function reference pages.

Searching Text with grep
grep is a powerful tool for performing text searches in files on UNIX systems.
To grep from within MATLAB, precede the command with an exclamation
point (!grep).

For example, to search for the word warning, ignoring case, in all M-files of
the current directory, you would use

!grep -i 'warning' *.m

Constructing Paths and Filenames
Use the fullfile function to construct path names and filenames rather
than entering them as strings into your programs. In this way, you always
get the correct path specification, regardless of which operating system you
are using at the time.

12-52

Operating System Compatibility

Finding the MATLAB Root Directory
The matlabroot function returns the location of the MATLAB installation
on your system. Use matlabroot to create a path to MATLAB and toolbox
directories that does not depend on a specific platform or MATLAB version.

The following example uses matlabroot with fullfile to return a
platform-independent path to the general toolbox directory:

fullfile(matlabroot,'toolbox','matlab','general')

Temporary Directories and Filenames
If you need to locate the directory on your system that has been designated to
hold temporary files, use the tempdir function. tempdir returns a string that
specifies the path to this directory.

To create a new file in this directory, use the tempname function. tempname
returns a string that specifies the path to the temporary file directory, plus a
unique filename.

For example, to store some data in a temporary file, you might issue the
following command first.

fid = fopen(tempname, 'w');

12-53

12 Programming Tips

Demos

Demos Available with MATLAB
MATLAB comes with a wide array of visual demonstrations to help you see
the extent of what you can do with the product. To start running any of the
demos, simply type demo at the MATLAB command prompt. Demos cover the
following major areas:

• MATLAB

• Toolboxes

• Simulink

• Blocksets

• Real-Time Workshop®

• Stateflow®

For more information: See Demos in the Help Browser in the MATLAB
Desktop Tools and Development Environment documentation, and the demo
function reference page.

12-54

For More Information

For More Information

In this section...

“Current CSSM” on page 12-55
“Archived CSSM” on page 12-55
“MATLAB Technical Support” on page 12-55
“Tech Notes” on page 12-55
“MATLAB Central” on page 12-55
“MATLAB Newsletters (Digest, News & Notes)” on page 12-55
“MATLAB Documentation” on page 12-56
“MATLAB Index of Examples” on page 12-56

Current CSSM

http://www.mathworks.com/matlabcentral/newsreader

Archived CSSM

http://mathforum.org/kb/forum.jspa?forumID=80

MATLAB Technical Support

http://www.mathworks.com/support/

Tech Notes

http://www.mathworks.com/support/tech-notes/list_all.html

MATLAB Central

http://www.mathworks.com/matlabcentral/

MATLAB Newsletters (Digest, News & Notes)

http://www.mathworks.com/company/newsletters/index.html

12-55

http://www.mathworks.com/matlabcentral/newsreader
http://mathforum.org/kb/forum.jspa?forumID=80
http://www.mathworks.com/support/
http://www.mathworks.com/support/tech-notes/list_all.html
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/company/newsletters/index.html

12 Programming Tips

MATLAB Documentation

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

MATLAB Index of Examples

http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

12-56

http://www.mathworks.com/access/helpdesk/help/helpdesk.html
http://www.mathworks.com/access/helpdesk/help/techdoc/demo_example.shtml

Index

IndexSymbols and Numerics
' symbol

for constructing a character array 2-119
() symbol

for indexing into an array 2-116
for specifying function input

arguments 2-116
[] symbol

for concatenating arrays 2-120
for constructing an array 2-120
for specifying function return values 2-120

{ } symbol
for constructing a cell array 2-113
for indexing into a cell array 2-113

! symbol
for entering a shell escape function 2-116

% symbol
for specifying character conversions 2-117
for writing single-line comments 2-117
for writing the H1 help line 3-11

* symbol
for filename wildcards 2-110

, symbol
for separating array indices 2-112
for separating array row elements 2-112
for separating input or output

arguments 2-113
for separating MATLAB commands 2-113

. symbol
for defining a structure field 2-114
for specifying object methods 2-114

: symbol
for converting to a column vector 2-112
for generating a numeric sequence 2-111
for preserving array shape on

assignment 2-112
for specifying an indexing range 2-112

; symbol
for separating rows of an array 2-118
for suppressing command output 2-118

@ symbol
for class directories 2-111
for constructing function handles 2-110

.() symbol
for creating a dynamic structure field 2-115

%{ and %} symbols
for writing multiple-line comments 2-117

.. symbol
for referring to a parent directory 2-114

... symbol
for continuing a command line 2-114

A
access modes

HDF4 files 7-68
accuracy of calculations 2-21
addition operator 2-23
and (M-file function equivalent for &) 2-27
anonymous functions 4-3

changing variables 4-9
constructing 4-3
evaluating variables 4-8
in cell arrays 4-6
multiple anonymous functions 4-13
passing a function to quad 4-12
using space characters in 4-6
with no input arguments 4-5

answer, assigned to ans 2-21
arguments

checking number of 3-45
function 3-10
memory requirements 11-6
order in argument list 3-49
order of outputs 3-47
parsing 3-50
passing 3-29
passing variable number 3-47
to nested functions 3-61

arithmetic operators 2-23

Index-1

Index

array headers
memory requirements 11-5

arrays
cell array of strings 1-44
copying 11-3
of strings 1-40

ASCII data
exporting 6-44
exporting delimited data 6-46
exporting with diary function 6-47
formats 6-35
importing 6-35
importing delimited files 6-38
importing mixed alphabetic and numeric

data 6-39
importing space-delimited data 6-37
reading formatted text 6-76
saving 6-46
specifying delimiter used in file 6-38
with text headers 6-41
writing 6-77

assert
formatting strings 1-46

assignment statements
local and global variables 2-17

attributes
retrieving from HDF4 files 7-69
writing to an HDF4 file 7-78

B
backtrace mode

warning control 8-31
base (numeric), converting 1-65
base date 2-52
binary data

controlling class of values read 6-71
using the Import Wizard 6-11
writing to 6-72

binary from decimal conversion 1-65

blanks
finding in string arrays 1-61

BLAS
for multithreading 10-14

built-in functions 2-122
forcing a built-in call 2-123
identifying 2-123

C
caching

MATLAB directory 3-14
callback functions

creating 9-15
specifying 9-17

calling context 3-20
calling MATLAB functions

storing as pseudocode 3-17
case conversion 1-68
CDF. See Common Data Format
cdfepoch object

representing CDF time values 7-6
cell arrays 1-101

creating 1-103
functions 1-123
of strings 1-44

comparing strings 1-60
functions 1-45

preallocating 10-8
with anonymous function elements 4-6

char class 6-71
character arrays

categorizing characters of 1-61
comparing 1-59
comparing values on cell arrays 1-60
conversion 1-63
converting to cell arrays 1-44
converting to numeric 1-65
creating 1-39
delimiting character 1-63

Index-2

Index

evaluating 2-6
finding a substring 1-62
functions 1-68
functions that create 1-67
functions that modify 1-68
in cell arrays 1-44
scalar 1-61
searching and replacing 1-62
searching or comparing 1-68
token 1-63
two-dimensional 1-40
using relational operators on 1-61

characters
conversion, in format specification

string 1-52
corresponding ASCII values 1-66
finding in string 1-61
used as delimiters 6-35

characters and strings 1-39
classes 1-2

cell arrays 1-101
cell arrays of strings 1-44
combining unlike classes 1-159
complex numbers 1-24
dates and times 2-51
determining 1-69
floating point 1-14

double-precision 1-14
single-precision 1-15

infinity 1-25
integers 1-6
logical 1-33
NaN 1-26
numeric 1-6
precedence 1-159
precision 6-71
reading files 6-71
specifying for input 6-71

classes, Map 1-144 to 1-145
methods 1-147

properties 1-146
classes, matlab

overview 1-165
classs

double precision 6-71
precision 6-71

clear 3-34 11-12
clipboard

importing binary data 6-11
closing

files 6-78
column separators

defined 6-35
comma-separated lists 2-34

assigning output from 2-36
assigning to 2-37
FFT example 2-40
generating from cell array 2-34
generating from structure 2-35
usage 2-38

concatenation 2-39
constructing arrays 2-38
displaying arrays 2-39
function call arguments 2-39
function return values 2-40

command/function duality 2-5 3-25
comments

in code 3-12
in scripts and functions 3-8

Common Data Format (CDF)
combining records to improve read

performance 7-5
converting CDF epoch values to MATLAB

datenum values 7-5
reading CDF files 7-2 to 7-3
reading metadata from CDF files 7-2
representing time values 7-6
speeding up read operations 7-5
writing data to CDF files 7-6

comparing

Index-3

Index

strings 1-59
complex arrays

memory requirements 11-7
complex conjugate transpose operator 2-23
complex number functions 1-31
complex numbers 1-24

creating 1-24
computational functions

in M-file 3-8
computer 2-21
computer type 2-21
concatenation

of strings 12-29
of unlike data types 1-159

conditional statements 3-45
conflicts, naming 2-14
containers, Map 1-144

concatenating 1-153
constructing objects of 1-147
examining contents of 1-150
mapping to different types 1-157
modifying a copy of 1-156
modifying keys 1-156
modifying values 1-155
reading from 1-151
removing keys and values 1-155
writing to 1-152

Contents.m file 3-15
control statements

break 2-49
case 2-44
catch 2-50
conditional control 2-42
continue 2-48
else 2-42
elseif 2-42
error control 2-49
for 2-46
if 2-42
loop control 2-46

otherwise 2-44
program termination 2-50
return 2-50
switch 2-44
try 2-50
while 2-47

conversion characters in format specification
string 1-52

converting
cases of strings 1-68
dates 2-51
numbers 1-63
numeric to string 1-63
string to numeric 1-65
strings 1-63

converting numeric and string classes 1-69
converting numeric and string data types 1-69
converting numeric to string 1-63
converting string to numeric 1-65
cos 3-19
cputime

versus tic and toc 10-3
creating

cell array 1-103
strings 1-39
timer objects 9-5

D
data

binary, dependence upon array size and
type 6-30

data organization
structure arrays 1-92

data types 1-2
cell arrays 1-101
cell arrays of strings 1-44
complex numbers 1-24
dates and times 2-51
determining 1-69

Index-4

Index

floating point 1-14
double-precision 1-14
single-precision 1-15

infinity 1-25
integers 1-6
logical 1-33
NaN 1-26
numeric 1-6
precedence 1-159

date 2-56
date and time functions 2-57
datenum 2-53
dates

base 2-52
conversions 2-53
handling and converting 2-51
number 2-52
string, vector of input 2-54

dates and times 2-51
datestr 2-53
datevec 2-53
debugging

errors and warnings 8-34
decimal representation

to binary 1-65
to hexadecimal 1-65

delaying program execution
using timers 9-2

delimiter in string 1-63
delimiters

defined 6-35
diary 6-47
directories

Contents.m file 3-15
help for 3-15
MATLAB

caching 3-14
private functions for 4-35
temporary 6-70

division operators

left division 2-23
matrix left division 2-23
matrix right division 2-23
right division 2-23

double precision 6-71
double-precision matrix 1-3 1-6
downloading files 6-121
duality, command/function 2-5 3-25
dynamic field names in structure arrays 1-80
dynamic regular expressions 2-88

E
Earth Observing System (EOS) 7-45
editor

accessing 3-13
for creating M-files 3-13

element-by-element organization for
structures 1-94

else, elseif 2-43
empty arrays

and if statement 2-43
and relational operators 2-25
and while loops 2-48

end of file 6-73
EOS (Earth Observing System)

sources of information 7-45
eps 2-21
epsilon 2-21
equal to operator 2-24
error 3-21

formatting strings 1-46
error handling

debugging 8-34
escape characters

in format specification string 1-48
evaluating

string containing function name 2-7
string containing MATLAB expression 2-6

examples

Index-5

Index

checking number of function arguments 3-46
for 2-46
function 3-21
if 2-42
script 3-19
switch 2-45
vectorization 10-4
while 2-48

exporting
ASCII data 6-44
in HDF4 format 7-66
in HDF5 format 7-25

exporting files
overview 6-2

expressions
involving empty arrays 2-25
most recent answer 2-21
scalar expansion with 2-24

external program, running from MATLAB 2-7

F
fclose 6-78
feof 6-72
fid. See file identifiers
field names

dynamic 1-80
file exchange

over Internet 6-121
file I/O

audio/video files 6-3 6-62
exporting 6-64
importing 6-62

binary files 6-3
files from the Internet 6-4
graphics files 6-3 6-59

exporting 6-60
importing 6-60

internet 6-121
downloading from web 6-121

FTP operations 6-126
sending e-mail 6-124
ZIP files 6-123

low-level functions 6-67
ASCII files:exporting 6-77
ASCII files:importing 6-76
binary files:exporting 6-72
binary files:importing 6-70

MAT-files
exporting 6-24

MATLAB HDF4 utility API 7-80
memory mapping. See memory mapping
overview 6-2

Import Wizard 6-4
low-level functions 6-5
toolboxes for importing data 6-5

scientific formats 7-1
CDF files 7-2
FITS files 7-17
HDF4 and HDF-DOS files 7-62
HDF4 files 7-45 7-66
HDF5 files 7-20

spreadsheet files 6-4 6-49
Lotus 123 6-55
Microsoft Excel 6-49

supported file formats 6-7
supported file types 6-2
system clipboard 6-4
text files

exporting 6-44
importing 6-35
text files 6-3

using Import Wizard 6-11
file identifiers

clearing 6-79
defined 6-68

file import and export
overview 6-2
supported file types 6-2

file operations

Index-6

Index

FTP 6-126
file types

audio, video 6-3
binary 6-3
graphics 6-3
spreadsheets 6-4
supported by MATLAB 6-2
text 6-3

filenames
wildcards 2-110

files
ASCII

reading 6-75
reading formatted text 6-76
writing 6-77

beginning of 6-73
binary

classes 6-71
controlling class values read 6-71
reading 6-70
writing to 6-72

closing 6-78
current position 6-73
end of 6-73
failing to open 6-69
file identifiers (FID) 6-68
MAT 6-33
opening 6-68
permissions 6-68
position 6-72
specifying delimiter used in ASCII files 6-38
temporary 6-70

find function
and subscripting 2-29

finding
substring within a string 1-62

FITS. See Flexible Image Transport System
Flexible Image Transport System (FITS)

reading 7-17
reading data 7-18

reading metadata 7-17
float 6-71
floating point 1-14
floating point, double-precision 1-14

converting to 1-16
creating 1-15
maximum and minimum values 1-18

floating point, single-precision 1-15
converting to 1-16
creating 1-16
maximum and minimum values 1-18

floating-point functions 1-30
floating-point numbers

largest 2-21
smallest 2-21

floating-point precision 6-71
floating-point relative accuracy 2-21
flow control

break 2-49
case 2-44
catch 2-50
conditional control 2-42
continue 2-48
else 2-42
elseif 2-42
error control 2-49
for 2-46
if 2-42
loop control 2-46
otherwise 2-44
program termination 2-50
return 2-50
switch 2-44
try 2-50
while 2-47

fopen 6-68
failing 6-69

for
example 2-46
indexing 2-47

Index-7

Index

nested 2-47
syntax 2-46

format for numeric values 1-27
formatting strings 1-46

field width 1-54
flags 1-54
format operator 1-50
precision 1-53
setting field width 1-56 to 1-57
setting precision 1-56 to 1-57
subtype 1-53
using identifiers 1-57
value identifiers 1-55

fprintf
formatting strings 1-46

fread 6-70
frewind 6-72
fseek 6-72
ftell 6-72
FTP file operations 6-126
function calls

memory requirements 11-6
function definition line

for subfunction 4-33
in an M-file 3-8
syntax 3-9

function handles
example 1-130
for nested functions 4-21
maximum name length 1-127
naming 1-127
operations on 1-143
overview of 1-126

function types
overloaded 4-37

function workspace 3-20
functions

arguments
passing variable number of 3-47

body 3-8 3-12

built-in 2-122
forcing a built-in call 2-123
identifying 2-123

calling
command syntax 3-26
function syntax 3-28
passing arguments 3-28

calling context 3-20
cell arrays 1-123
cell arrays of strings 1-45
character arrays 1-68
clearing from memory 3-34
comments 3-8
comparing character arrays 1-68
complex number 1-31
date and time 2-57
example 3-21
executing function name string 2-7
floating-point 1-30
infinity 1-31
integer 1-30
logical array 1-36
M-file 2-121
modifying character arrays 1-68
multiple output arguments 3-10
naming

conflict with variable names 2-14
NaN 1-31
numeric and string conversion 1-69
numeric to string conversion 1-63
output formatting 1-32
overloaded 2-123
primary 4-33
searching character arrays 1-68
shadowed 2-14
storing as pseudocode 3-17
string to numeric conversion 1-65
struct arrays 1-98
that determine data type 1-69
type identification 1-32

Index-8

Index

types of 3-21
anonymous 4-3
nested 4-16
overloaded 4-37
primary 4-15
private 4-35
subfunctions 4-33

fwrite 6-72

G
global attributes

HDF4 files 7-69
global variables 2-10

alternatives 2-12
creating 2-11
displaying 2-11
suggestions for use 2-11

graphics files
getting information about 6-59
importing and exporting 6-59

greater than operator 2-24
greater than or equal to operator 2-24

H
H1 line 3-8 3-11

and help command 3-8
and lookfor command 3-8

HDF Import Tool
using 7-45
using subsetting options 7-50

HDF-EOS
Earth Observing System 7-45

HDF4 7-45
closing a data set 7-79
closing a file 7-80
closing all open identifiers 7-81
closing data sets 7-72
creating a file 7-74

creating data sets 7-74
exporting in HDF4 format 7-66
importing data 7-63
importing subsets of data 7-48
listing all open identifiers 7-80
low-level functions

overview 7-65
reading data 7-67

mapping HDF4 syntax to MATLAB
syntax 7-66

MATLAB utility API 7-80
opening files 7-68
overview 7-45
reading data 7-71
reading data set metadata 7-70
reading data sets 7-70
reading global attributes 7-69
reading metadata 7-68
selecting data sets to import 7-47
specifying file access modes 7-68
using hdfinfo to import metadata 7-62
using high-level functions

overview 7-62
using predefined attributes 7-78
using the HDF Import Tool 7-45
writing data 7-73 7-76
writing metadata 7-78
See also HDF5

HDF5 7-20
exporting data in HDF5 format 7-25
low-level functions

mapping HDF5 data types to MATLAB
data types 7-39

mapping HDF5 syntax to MATLAB
syntax 7-37

reading and writing data 7-41
overview 7-20
using hdf5info to read metadata 7-20
using hdf5read to import data 7-24
using high-level functions 7-20

Index-9

Index

using low-level functions 7-36
See also HDF4

help
and H1 line 3-8
M-file 3-11

help text 3-8
hexadecimal, converting from decimal 1-65
Hierarchical Data Format. See HDF4. See HDF5

I
if

and empty arrays 2-43
example 2-42
nested 2-43

imaginary unit 2-21
Import Data option 6-11
import functions

comparison of features 6-37
Import Wizard

importing binary data 6-11
overview 6-4

importing
ASCII data 6-35
HDF4 data 7-62

from the command line 7-65
selecting HDF4 data sets 7-47
subsets of HDF4 data 7-48

importing files
overview 6-2

indexing
for loops 2-47

Inf 2-21
infinity 1-25

functions 1-31
represented in MATLAB 2-21

inputParser class
arguments that default 3-56
building the schema 3-51
case-sensitive matching 3-58

constructor 3-51
defined 3-50
handling unmatched arguments 3-57
method summary 3-59
parsing parameters 3-53
passing arguments in a structure 3-54
property summary 3-60

integer class 6-77
integer functions 1-30
integers 1-6

creating 1-7
largest system can represent 2-21
smallest system can represent 2-21

Internet functions 6-121
intmax 2-21
intmin 2-21

K
keywords 2-20

checking for 12-26

L
large data sets

memory usage in array storage 11-3
memory usage in function calls 11-16
reading 6-42

less than operator 2-24
less than or equal to operator 2-24
load 11-12
local variables 2-9
logical array functions 1-36
logical classes 1-33
logical data types 1-33
logical expressions

and subscripting 2-29
logical operators 2-25

bit-wise 2-30
elementwise 2-26

Index-10

Index

short-circuit 2-31
long 6-71
long integer 6-71
lookfor 3-8 3-11

and H1 line 3-8
loops

for 2-46
while 2-47

M
M-file functions

identifying 2-121
M-files

comments 3-12
contents 3-8
creating

in MATLAB directory 3-14
creating with text editor 3-13
kinds 3-7
naming 3-7
overview 3-8
primary function 4-15
subfunction 4-33
superseding existing names 4-34

Map class 1-144 to 1-145
constructing objects of 1-147
methods 1-147
properties 1-146

Map objects 1-144
concatenating 1-153
constructing 1-147
examining contents of 1-150
mapping to different types 1-157
modifying a copy of 1-156
modifying keys 1-156
modifying values 1-155
reading from 1-151
removing keys and values 1-155
writing to 1-152

mapping memory. See memory mapping
MATLAB

programming
M-files 3-7
scripts 3-19

version 2-21
matrices

double-precision 1-3 1-6
for loop index 2-47
See also matrices 2-47
single-precision 1-3 1-6

memory
function workspace 3-20
making efficient use of 11-2
management 11-12
Out of Memory message 11-22

memory mapping
demonstration 6-116
memmapfile class

class constructor 6-86
class methods 6-113
class properties 6-84
defined 6-84
Filename property 6-89
Format property 6-91
Offset property 6-90
Repeat property 6-98
supported formats 6-97
Writable property 6-99

overview 6-80
benefits of 6-81
byte ordering 6-83
limitations of 6-82
when to use 6-83

reading from file 6-100
removing map 6-115
selecting file to map 6-89
setting access privileges 6-99
setting extent of map 6-98
setting start of map 6-90

Index-11

Index

specifying classes in file 6-91
supported classes 6-97
writing to file 6-105

memory requirements
array headers 11-5
for array allocation 11-2
for complex arrays 11-7
for copying arrays 11-3
for creating and modifying arrays 11-2
for handling variables in 11-2
for numeric arrays 11-7
for passing arguments 11-6
for sparse matrices 11-7

message identifiers
using with warnings 8-26

methods
determining which is called 3-37

multiple conditions for switch 2-45
multiplication operators

matrix multiplication 2-23
multiplication 2-23

multiprocessing
explicit 10-16
implicit 10-14
overview of 10-13

multithreaded computation 10-14
enabling 10-15
number of threads 10-16

multithreading
BLAS 10-14

N
names

superseding 4-34
naming conflicts 2-14
NaN 1-26 2-21

functions 1-31
logical operations on 1-26

nargin 3-45

checking input arguments 3-45
in nested functions 3-61

nargout 3-45
checking output arguments 3-45
in nested functions 3-61

nested functions 4-16
creating 4-16
example — creating a function handle 4-27
example — function-generating

functions 4-29
passing optional arguments 3-61
separate variable instances 4-25
using function handles with 4-21
variable scope in 4-19

nesting
for loops 2-47
if statements 2-43

netCDF
mapping netCDF syntax to MATLAB

syntax 7-9
MATLAB support 7-8
reading and writing data 7-10

Network Common Data Form
see netCDF 7-8

newlines in string arrays 1-61
not (M-file function equivalent for ~) 2-27
not a number (NaN) 1-26
not equal to operator 2-24
Not-a-Number 2-21
now 2-56
number of arguments 3-45
numbers

date 2-52
time 2-52

numeric arrays
memory requirements 11-7

numeric classes 1-6
conversion functions 1-69
converting to char 1-63
setting display format 1-27

Index-12

Index

numeric data types 1-6
conversion functions 1-69
setting display format 1-27

numeric to string conversion
functions 1-63

O
objects

definitions of 5-2
key concepts 5-8

online help 3-11
opening

files
failing 6-69
HDF4 files 7-68
permissions 6-68
using low-level functions 6-68

operator precedence 2-32
overriding 2-33

operators
addition 2-23
arithmetic 2-23
categories 2-23
colon 2-23
complex conjugate transpose 2-23
equal to 2-24
greater than 2-24
greater than or equal to 2-24
left division 2-23
less than 2-24
less than or equal to 2-24
logical 2-25

bit-wise 2-30
elementwise 2-26
short-circuit 2-31

matrix left division 2-23
matrix multiplication 2-23
matrix power 2-23
matrix right division 2-23

multiplication 2-23
not equal to 2-24
power 2-23
relational 2-24
right division 2-23
subtraction 2-23
transpose 2-23
unary minus 2-23
unary plus 2-23

optimization
preallocation, array 10-7
vectorization 10-4

or (M-file function equivalent for |) 2-27
organizing data

structure arrays 1-92
Out of Memory message 11-22
output arguments 3-10

order of 3-47
output formatting functions 1-32
overloaded functions 2-123 4-37

P
pack 11-12
packages

use in references 5-11
parentheses

for input arguments 3-10
overriding operator precedence with 2-33

parsing input arguments 3-50
Paste Special option 6-11
pcode 3-17
percent sign (comments) 3-12
performance

analyzing 10-2
permission strings 6-68
persistent variables 2-12

initializing 2-13
pi 2-21
plane organization for structures 1-93

Index-13

Index

polar 3-20
power operators

matrix power 2-23
power 2-23

preallocation
arrays 10-7
cell array 10-8

precedence
of class 1-159
of data types 1-159
operator 2-32

overriding 2-33
precision

char 6-71
classes 6-71
double 6-71
float 6-71
long 6-71
short 6-71
single 6-71
uchar 6-71

primary functions 4-15
private directory 4-35
private functions 4-35

precedence of when calling 3-36
program control

break 2-49
case 2-44
catch 2-50
conditional control 2-42
continue 2-48
else 2-42
elseif 2-42
error control 2-49
for 2-46
if 2-42
loop control 2-46
otherwise 2-44
program termination 2-50
return 2-50

switch 2-44
try 2-50
while 2-47

programs
running external 2-7

pseudocode 3-17

Q
quit 11-12

R
reading

HDF4 data 7-62
from the command line 7-65

selecting HDF4 data sets 7-47
subsets of HDF4 data 7-48

realmax 2-21
realmin 2-21
regexp 2-60
regexpi 2-60
regexprep 2-60
regexptranslate 2-60
regular expression operators

character representation
alarm character (\a) 2-65
backslash character (\\) 2-65 2-103
backspace character (\b) 2-65
carriage return character (\r) 2-65
dollar sign (\$) 2-65 2-103
form feed character (\f) 2-65
hexadecimal character (\x) 2-65
horizontal tab character (\t) 2-65
literal character (\char) 2-65
new line character (\n) 2-65
octal character (\o) 2-65
vertical tab character (\v) 2-65

character types
match alphanumeric character (\w) 2-64

Index-14

Index

match any character (period) 2-62
match any characters but these

([^c1c2c3]) 2-61
match any of these characters

([c1c2c3]) 2-63
match characters in this range

([c1-c2]) 2-64
match digit character (\d) 2-64
match nonalphanumeric character

(\W) 2-62
match nondigit character (\D) 2-62
match nonwhitespace character

(\S) 2-61
match whitespace character (\s) 2-64

conditional operators
if condition, match expr

((?(condition)expr)) 2-85 2-107
dynamic expressions

pattern matching functions 2-91
pattern matching scripts 2-92
replacement expressions 2-91
string replacement functions 2-95

logical operators
atomic group ((?>expr)) 2-66
comment (?#expr) 2-68
grouping and capture (expr) 2-66
grouping only (?:expr) 2-66
match exact word (\<expr\>) 2-69
match expr1 or expr2 (expr1|expr2) 2-67
match if expression begins string

(^expr) 2-69
match if expression begins word

(\<expr) 2-69
match if expression ends string

(expr$) 2-69
match if expression ends word

(expr\>) 2-69
noncapturing group ((?:expr)) 2-66

lookaround operators

match expr1, if followed by expr2
(expr1(?=expr2)) 2-71

match expr1, if not followed by expr2
(expr1(?!expr2)) 2-72

match expr2, if not preceded by expr1
(expr1(?<!expr2)) 2-73

match expr2, if preceded by expr1
(expr1(?<=expr2)) 2-72

operator summary 2-102
quantifiers

lazy quantifier (quant?) 2-78
match 0 or 1 instance (expr?) 2-76
match 0 or more instances (expr*) 2-77
match 1 or more instances (expr+) 2-77
match at least m instances

(expr{m,}) 2-75
match m to n instances (expr{m,n}) 2-78
match n instances (expr{n}) 2-75

token operators
conditional with named token

((?(name)s1|s2)) 2-84
create named token

((?<name>expr)) 2-83
create unnamed token ((expr)) 2-79
give name to token

((?<name>expr))) 2-83
if token, match expr1, else expr2

((?(token)expr1|expr2)) 2-85
match named token (\k<name>) 2-83
match Nth token (\N) 2-79
replace Nth token ($N) 2-79
replace Nth token (N) 2-79
replace with named token

(?<name>) 2-84
regular expressions

character representation 2-65
character types 2-61
conditional expressions 2-85
dynamic expressions 2-88

example 2-89

Index-15

Index

functions
regexp 2-60
regexpi 2-60
regexprep 2-60
regexptranslate 2-60

introduction 2-59
logical operators 2-66
lookaround operators 2-68

used in logical statements 2-74
multiple strings

finding a single pattern 2-99
finding multiple patterns 2-100
matching 2-99
replacing 2-101

quantifiers 2-75
lazy 2-78

tokens 2-78
example 1 2-80
example 2 2-81
introduction 2-79
named capture 2-83
operators 2-79
use in replacement string 2-83

relational operators 2-24
empty arrays 2-25
strings 1-61

replacing substring within string 1-62

S
save 11-12
scalar

and relational operators 1-61
expansion 2-24
string 1-61

scheduling program execution
using timers 9-2

scripts 3-7
example 3-19
executing 3-20

search path
M-files on 4-34

shell escape functions 2-7
short 6-71
short integer 6-71
short-circuiting

in conditional expressions 2-28
operators 2-31

single precision 6-71
single-precision matrix 1-3 1-6
smallest value system can represent 2-21
(space) character

for separating array row elements 2-119
for separating function return values 2-119

sparse matrices
memory requirements 11-7

sprintf 6-78
formatting strings 1-46

square brackets
for output arguments 3-10

sscanf 6-77
starting

timers 9-10
statements

conditional 3-45
stopping

timers 9-10
strcmp 1-59
string to numeric conversion

functions 1-65
strings 1-39

comparing 1-59
converting to numeric 1-65
functions to create 1-67
searching and replacing 1-62

strings, cell arrays of 1-44
strings, formatting 1-46

escape characters 1-48
field width 1-54
flags 1-54

Index-16

Index

format operator 1-50
precision 1-53
setting field width 1-56 to 1-57
setting precision 1-56 to 1-57
subtype 1-53
using identifiers 1-57
value identifiers 1-55

struct arrays
functions 1-98

structure arrays
data organization 1-92
dynamic field names 1-80
element-by-element organization 1-94
organizing data 1-92

example 1-95
plane organization 1-93

structures
field names

dynamic 1-80
subfunctions 4-33

accessing 4-34
creating 4-33
debugging 4-34
definition line 4-33
precedence of 3-35

subscripting
with logical expression 2-29
with the find function 2-29

substring within a string 1-62
subtraction operator 2-23
superseding existing M-file names 4-34
switch

case groupings 2-44
example 2-45
multiple conditions 2-45

symbols 2-109
asterisk * 2-109
at sign @ 2-110
colon : 2-111
comma , 2-112

curly braces { } 2-113
dot . 2-113
dot-dot .. 2-114
dot-dot-dot ... 2-114
dot-parentheses .() 2-115
exclamation point ! 2-116
parentheses () 2-116
percent % 2-116
percent-brace %{ and %} 2-117
semicolon ; 2-117
single quotes ' 2-118
space character 2-119
square brackets [] 2-120

T
tabs in string arrays 1-61
tempdir 6-70
tempname 6-70
temporary files

creating 6-70
text files

reading 6-75
tic and toc

versus cputime 10-3
time

numbers 2-52
time and date functions 2-57
timer objects

blocking the command line 9-12
callback functions 9-14
creating 9-5
deleting 9-5
execution modes 9-19
finding all existing timers 9-24
naming convention 9-6
overview 9-2
properties 9-7
starting 9-10
stopping 9-10

Index-17

Index

timers
starting and stopping 9-10
using 9-2

times and dates 2-51
tips, programming

additional information 12-55
command and function syntax 12-3
debugging 12-21
demos 12-54
development environment 12-10
evaluating expressions 12-32
files and filenames 12-45
function arguments 12-15
help 12-6
input/output 12-48
M-file functions 12-12
MATLAB path 12-34
operating system compatibility 12-52
program control 12-38
program development 12-18
save and load 12-42
starting MATLAB 12-51
strings 12-29
variables 12-25

token in string 1-63
tokens

regular expressions 2-78
tolerance 2-21
transpose operator 2-23
type identification functions 1-32

U
uchar class 6-71
unary minus operator 2-23
unary plus operator 2-23

V
value

class 6-71
largest system can represent 2-21

varargin 3-48
in argument list 3-49
in nested functions 3-61
unpacking contents 3-48

varargout 3-48
in argument list 3-49
in nested functions 3-61
packing contents 3-48

variables
global 2-10

alternatives 2-12
creating 2-11
displaying 2-11
recommendations 2-18
suggestions for use 2-11

in evaluation statements 2-16
lifetime of 2-19
loaded from a MAT-file 2-15
local 2-9
naming 2-13

conflict with function names 2-14
persistent 2-12

initializing 2-13
scope 2-17

in nested functions 2-19
storage in memory 11-2
usage guidelines 2-17

vector
of dates 2-54
preallocation 10-7

vectorization 10-4
example 10-4
replacing for

vectorization 2-46
verbose mode

warning control 8-31
version 2-21

obtaining 2-21

Index-18

Index

W
warning

formatting strings 1-46
warning control 8-24

backtrace, verbose modes 8-31
saving and restoring state 8-30

warning control statements
message identifiers 8-26
output from 8-28
output structure array 8-29

warnings
debugging 8-34
identifying 8-23
syntax 8-25
warning control statements 8-26
warning states 8-26

Web content access 6-121
which 3-37

while
empty arrays 2-48
example 2-48
syntax 2-47

white space
finding in string 1-61

whos
interpreting memory use 11-12

wildcards, in filenames 2-110
workspace

context 3-20
of individual functions 3-20

writing
ASCII data 6-44
HDF4 data 7-76
in HDF4 format 7-66
in HDF5 format 7-25

Index-19

	toc
	Classes (Data Types)
	Overview of MATLAB Classes
	Fundamental MATLAB Classes
	How to Use the Different Classes

	Numeric Classes
	Overview
	Integers
	Creating Integer Data
	Arithmetic Operations on Integer Classes
	Largest and Smallest Values for Integer Classes
	Warnings for Integer Classes
	Integer Functions

	Floating-Point Numbers
	Double-Precision Floating Point
	Single-Precision Floating Point
	Creating Floating-Point Data
	Arithmetic Operations on Floating-Point Numbers
	Largest and Smallest Values for Floating-Point Classes
	Accuracyof Floating-Point Data
	Avoiding Common Problems with Floating-Point Arithmetic
	Floating-Point Functions
	References

	Complex Numbers
	Creating Complex Numbers
	Complex Number Functions

	Infinity and NaN
	Infinity
	NaN
	Infinity and NaN Functions

	Identifying Numeric Classes
	Display Format for Numeric Values
	Display Format Examples
	Setting Numeric Format in a Program

	Function Summary

	Logical Classes
	Overview of Logical Classes
	Identifying Logical Arrays
	Examples of Identifying Logical Arrays

	Functions that Return a Logical Result
	Examples of Functions that Return a Logical Result

	Using Logical Arrays in Conditional Statements
	Using Logical Arrays in Indexing

	Characters and Strings
	Creating Character Arrays
	Creating a Single Character
	Creating a Character String
	Creating an Array of Strings
	Creating Character Arrays by Concatenation
	Identifying Characters in a String
	Working with Space Characters
	Expanding Character Arrays

	Cell Arrays of Strings
	Converting to a Cell Array of Strings
	Functions for Cell Arrays of Strings

	Formatting Strings
	The Format String
	Input Value Arguments
	The Formatting Operator
	Constructing the Formatting Operator
	Setting Field Width and Precision
	Restrictions for Using Identifiers

	String Comparisons
	Comparing Strings for Equality
	Comparing for Equality Using Operators
	Categorizing Characters Within a String

	Searching and Replacing
	Converting from Numeric to String
	Converting to a Character Equivalent
	Converting to a String of Numbers
	Converting to a Specific Radix

	Converting from String to Numeric
	Converting from a Character Equivalent
	Converting from a Numeric String
	Converting from a Specific Radix

	Function Summary

	Structures
	What Is a Structure?
	Reasons to Use a Structure
	Comparing Struct Arrays with Cell Arrays

	Creating a Structure
	Creating Structures and Structure Fields
	Handling Unassigned Fields
	Preallocating Memory for the Array

	Structure Fields
	Guidelines for Naming Structure Fields
	Listing the Fields of a Structure
	Arranging Fieldnames Alphabetically
	Creating Field Names Dynamically
	Functions That Operate on Fields

	Indexing into a Struct Array
	Basic Struct and Field Indexing
	Indexing to Inner Levels of the Struct Array
	Indexing Tips

	Returning Data from a Struct Array
	Assigning Struct Values to a Comma-Separated List
	Assigning Struct Values to Separate Variables
	Assigning Struct Values to a Cell Array

	Using Structures with Functions
	Applying a Function to the Fields of a Structure
	Passing Arguments in a Structure
	Passing Selected Fields in a Structure

	Converting Between Struct Array and Cell Array
	Conversion Example

	Organizing Data in Structure Arrays
	Plane Organization
	Element-by-Element Organization
	Example — A Simple Database

	Operator Summary
	Operators That Construct the Array
	Operators That Concatenate Structures
	Operators Used for Array Indexing

	Function Summary
	Functions Related to Constructing the Array
	Functions Related to the Type of the Array
	Functions Related to Struct Fields
	Functions Related to Applying Functions to a Struct Array

	Cell Arrays
	What Is a Cell Array?
	Cell Array Operations
	Creating a Cell Array
	Nesting One Cell Array in Another
	Creating Cell Arrays One Cell At a Time
	Alternative Assignment Syntax
	Preallocating Memory for the Array

	Concatenating Cell Arrays
	Indexing into a Cell Array
	Indexing Into Inner Levels of the Cell Array
	Indexing Tips
	Using Map Objects in Cell Array Indexing

	Assigning Values to a Cell Array
	Returning Data from a Cell Array
	Obtaining Values from the Array
	Assigning Cell Values to a Comma-Separated List
	Assigning Cell Values to Separate Variables
	Plotting the Cell Array

	Using Cell Arrays with Functions
	Applying a Function to the Cells of a Cell Array
	Passing Variable Numbers of Arguments
	Passing Arguments in a Cell Array
	Passing Selected Cells of a Cell Array

	Converting Between Cell Array and Struct Array
	Conversion Example

	Operator Summary
	Operators That Construct the Cell Array
	Operators That Concatenate Cells and Cell Content
	Operators Used for Cell Array Indexing

	Function Summary
	Functions Related to Constructing the Array
	Functions Related to the Type of the Array
	Functions Related to Obtaining Cell Array Contents
	Functions Related to Applying Functions to a Cell Array
	Functions Used with Cell Array Conversion

	Function Handles
	Overview
	Creating a Function Handle
	Maximum Length of a Function Name
	Associating a Handle with a Function
	Handles to Anonymous Functions
	Function Handle Arrays

	Calling a Function Using Its Handle
	Example of Passing a Function Handle

	Handling Values Returned From a Call
	Applications of Function Handles
	Pass a Function to Another Function
	Capture Data Values For Later Use By a Function
	Call Functions Outside of Their Normal Scope
	Save the Handle in a MAT-File for Use in a Later MATLAB Session

	Saving and Loading Function Handles
	Invalid or Obsolete Function Handles

	Advanced Operations on Function Handles
	Examining a Function Handle
	Converting to and from a String
	Comparing Function Handles

	Functions That Operate on Function Handles

	Map Containers
	Overview of the Map Data Structure
	Description of the Map Class
	Properties of the Map Class
	Methods of the Map Class

	Creating a Map Object
	Constructing an Empty Map Object
	Constructing An Initialized Map Object
	Combining Map Objects

	Examining the Contents of the Map
	Reading and Writing Using a Key Index
	Reading From the Map
	Adding Key/Value Pairs
	Building a Map with Concatenation

	Modifying Keys and Values in the Map
	Removing Keys and Values from the Map
	Modifying Values
	Modifying Keys
	Modifying a Copy of the Map

	Mapping to Different Value Types
	Mapping to a Structure Array
	Mapping to a Cell Array

	Combining Unlike Classes
	Combining Unlike Integer Types
	Example of Combining Unlike Integer Sizes
	Example of Combining Signed with Unsigned

	Combining Integer and Noninteger Data
	Empty Matrices
	Concatenation Examples
	Combining Single and Double Types
	Combining Integer and Double Types
	Combining Character and Double Types
	Combining Logical and Double Types

	Defining Your Own Classes

	Basic Program Components
	MATLAB Commands
	Basic Command Syntax
	Entering More Than One Command on a Line
	Assigning to Multiple Outputs
	Assigning Fewer Than the Full Number of Outputs

	Commands that Call MATLAB Functions

	Expressions
	String Evaluation
	eval
	feval

	Shell Escape Functions

	Variables
	Types of Variables
	Local Variables
	Global Variables
	Persistent Variables

	Naming Variables
	Verifying a Variable Name
	Avoid Using Function Names for Variables
	Potential Conflict with Function Names

	Guidelines to Using Variables
	Scope of a Variable
	Extending Variable Scope
	Scope in Nested Functions

	Lifetime of a Variable

	Keywords
	Special Values
	Operators
	Arithmetic Operators
	Arithmetic Operators and Arrays

	Relational Operators
	Relational Operators and Arrays
	Relational Operators and Empty Arrays

	Logical Operators
	Element-Wise Operators and Functions
	Bit-Wise Functions
	Short-Circuit Operators

	Operator Precedence
	Precedence of AND and OR Operators
	Overriding Default Precedence

	Comma-Separated Lists
	What Is a Comma-Separated List?
	Generating a Comma-Separated List
	Generating a List from a Cell Array
	Generating a List from a Structure

	Assigning Output from a Comma-Separated List
	Assigning to a Comma-Separated List
	How to Use the Comma-Separated Lists
	Constructing Arrays
	Displaying Arrays
	Concatenation
	Function Call Arguments
	Function Return Values

	Fast Fourier Transform Example

	Program Control Statements
	Conditional Control — if, switch
	if, else, and elseif
	switch, case, and otherwise

	Loop Control — for, while, continue, break
	for
	while
	continue
	break

	Error Control — try, catch
	try and catch

	Program Termination — return
	return

	Dates and Times
	Overview
	Types of Date Formats
	Date Strings
	Serial Date Numbers
	Date Vectors

	Conversions Between Date Formats
	Date String Formats
	Output Formats
	Converting Output Format with datestr

	Current Date and Time
	Function Summary

	Regular Expressions
	Overview
	MATLAB Regular Expression Functions
	Character Types
	Any Character — .
	Selected Characters — [c1c2c3]
	Range of Characters — [c1 - c2]
	Word and White-Space Characters — \w, \s
	Numeric Digits — \d

	Character Representation
	Octal and Hexadecimal — \o, \x

	Grouping Operators
	Grouping and Capture — (expr)
	Grouping Only — (?:expr)
	Alternative Match — expr1|expr2

	Nonmatching Operators
	Including Comments — (?#expr)

	Positional Operators
	Start and End of String Match — ^expr, expr$
	Start and End of Word Match — \<expr, expr\>
	Exact Word Match — \<expr\>

	Lookaround Operators
	Using the Lookahead Operator — expr(?=test)
	Using the Negative Lookahead Operator — expr(?!test)
	Using the Lookbehind Operator — (?<=test)expr
	Using the Negative Lookbehind Operator— (?<!test)expr
	Using Lookaround as a Logical Operator

	Quantifiers
	Zero or One — expr?
	Zero or More — expr*
	One or More — expr+
	Exact, Minimum, and Maximum Quantities — {min,max}
	Lazy Quantifiers — expr*?

	Tokens
	Operators Used with Tokens
	Introduction to Using Tokens
	Using Tokens — Example 1
	Using Tokens — Example 2
	Tokens That Are Not Matched
	Using Tokens in a Replacement String

	Named Capture
	Labeling Your Output

	Conditional Expressions
	Conditions Based on Tokens
	Conditions Based on a Lookaround Match
	Conditions Based on Return Values

	Dynamic Regular Expressions
	Example of a Dynamic Expression
	Dynamic Operators for the Match Expression
	Dynamic Operators for the Replacement Expression

	String Replacement
	Handling Multiple Strings
	Finding a Single Pattern in Multiple Strings
	Finding Multiple Patterns in Multiple Strings
	Replacing Multiple Strings

	Operator Summary

	Symbol Reference
	Asterisk — *
	Filename Wildcard

	At — @
	Function Handle Constructor
	Class Directory Designator

	Colon — :
	Numeric Sequence Range
	Numeric Sequence Step
	Indexing Range Specifier
	Conversion to Column Vector
	Preserving Array Shape on Assignment

	Comma — ,
	Row Element Separator
	Array Index Separator
	Function Input and Output Separator
	Command or Statement Separator

	Curly Braces — { }
	Cell Array Constructor
	Cell Array Indexing

	Dot — .
	Structure Field Definition
	Object Method Specifier

	Dot-Dot — ..
	Parent Directory

	Dot-Dot-Dot (Ellipsis) — ...
	Line Continuation

	Dot-Parentheses — .()
	Dynamic Structure Fields

	Exclamation Point — !
	Shell Escape

	Parentheses — ()
	Array Indexing
	Function Input Arguments

	Percent — %
	Single Line Comments
	Conversion Specifiers

	Percent-Brace — %{ %}
	Block Comments

	Semicolon — ;
	Array Row Separator
	Output Suppression
	Command or Statement Separator

	Single Quotes — ’ ’
	Character and String Constructor

	Space Character
	Row Element Separator
	Function Output Separator

	Slash and Backslash — / \
	Square Brackets — []
	Array Constructor
	Concatenation
	Function Declarations and Calls

	Internal MATLAB Functions
	Overview
	M-File Functions
	Identifying M-File Functions
	Viewing the Source Code

	Built-In Functions
	Identifying Built-In Functions
	Forcing a Built-In Call

	Overloaded MATLAB Functions

	Functions and Scripts
	Program Development
	Overview
	Creating a Program
	Saving the Program
	Running the Program

	Getting the Bugs Out
	The Debugging Process

	Cleaning Up the Program
	Improving Performance
	Summary Report
	Detail Report
	File Listing

	Checking It In

	Working with M-Files
	Overview
	Types of M-Files
	Basic Parts of an M-File
	Function Definition Line
	The H1 Line
	Help Text
	The Function or Script Body
	Comments

	Creating a Simple M-File
	Using Text Editors
	A Word of Caution on Saving M-Files

	Providing Help for Your Program
	Cleaning Up the M-File When Done
	Example 1
	Example 2

	Creating P-Code Files

	M-File Scripts and Functions
	M-File Scripts
	The Base Workspace
	Simple Script Example

	M-File Functions
	The Function Workspace
	Simple Function Example

	Types of Functions
	Organizing Your Functions
	Identifying Dependencies
	Simple Display of M-File Dependencies
	Detailed Display of M-File Dependencies

	Calling Functions
	Command vs. Function Syntax
	Overview
	MATLAB Command Syntax
	MATLAB Function Syntax
	Common Mistakes In Syntax
	Recognizing Function Calls That Use Command Syntax

	What Happens When You Call a Function
	Clearing Functions from Memory

	Determining Which Function Gets Called
	Function Scope
	Function Precedence Order
	Multiple Implementation Types
	Querying Which Function Gets Called

	Calling External Functions
	Running External Programs

	Function Arguments
	Overview
	Passing Certain Argument Types
	Passing Strings
	Passing Filenames
	Passing Function Handles

	Passing Arguments in Structures or Cell Arrays
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Assigning Output Arguments
	Assigning Optional Return Values

	Checking the Number of Input Arguments
	Passing Variable Numbers of Arguments
	Unpacking varargin Contents
	Packing varargout Contents
	varargin and varargout in Argument Lists

	Parsing Inputs with inputParser
	Defining a Specification for Each Input Parameter
	Parsing Parameter Values on the Function Call
	Packaging Arguments in a Structure
	Arguments That Default
	Validating the Input Arguments
	Making a Copy of the Schema
	Summary of inputParser Methods
	Summary of inputParser Properties that Control Parsing
	Summary of inputParser Properties that Provide Information

	Passing Optional Arguments to Nested Functions
	Using varargin and varargout
	Using nargin and nargout
	Example of Passing Optional Arguments to Nested Functions

	Returning Modified Input Arguments

	Types of Functions
	Overview of MATLAB Function Types
	Anonymous Functions
	Constructing an Anonymous Function
	Simple Example
	A Two-Input Example
	Evaluating With No Input Arguments

	Arrays of Anonymous Functions
	Space Characters in Anonymous Function Elements

	Outputs from Anonymous Functions
	Example

	Variables Used in the Expression
	Changing Variables Used in an Anonymous Function

	Examples of Anonymous Functions
	Example 1 — Passing a Function to quad
	Example 2 — Multiple Anonymous Functions

	Primary M-File Functions
	Nested Functions
	Writing Nested Functions
	Example — More Than One Nested Function
	Example — Multiply Nested Functions

	Calling Nested Functions
	Variable Scope in Nested Functions
	The Scope of Output Variables

	Using Function Handles with Nested Functions
	Function Handles and Nested Function Variables
	Example Using Externally Scoped Variables
	Separate Instances of Externally Scoped Variables

	Restrictions on Assigning to Variables
	Examples of Nested Functions
	Example 1 — Creating a Function Handle for a Nested Function
	Example 2 — Function-Generating Functions

	Subfunctions
	Overview
	Calling Subfunctions
	Accessing Help for a Subfunction

	Private Functions
	Overview
	Private Directories
	Accessing Help for a Private Function

	Overloaded Functions

	Using Objects
	MATLAB Objects
	What Are Objects?
	Accessing Objects

	Objects In the MATLAB Language
	Other Kinds of Objects Used by MATLAB

	General Purpose Vs. Specialized Arrays
	How They Differ
	Using General-Purpose Variables
	Using Specialized Objects

	Key Object Concepts
	Basic Concepts
	Classes Describe How to Create Objects
	Properties Contain Data
	Methods Implement Operations

	Creating Objects
	Class Constructor
	When to Use Package Names

	Accessing Object Data
	Listing Public Properties
	Getting Property Values
	Setting Property Values

	Calling Object Methods
	What Operations Can You Perform
	Method Syntax
	Calling the Correct Method

	Class of Objects Returned by Methods

	Desktop Tools Are Object Aware
	Tab Completion Works with Objects
	Editing Objects with the Variable Editor

	Getting Information About Objects
	The Class of Workspace Variables
	Extracting Data From Object Properties
	Testing for the Class of an Object

	Information About Class Members
	These functions provide information about the object.

	Logical Tests for Objects
	Testing for Object Equality
	Identifying MATLAB Objects

	Displaying Objects
	Getting Help for MATLAB Objects

	Copying Objects
	Two Copy Behaviors
	More Information About Handle and Value Classes

	Value Object Copy Behavior
	Value Object Properties

	Handle Object Copy Behavior
	Reassigning Handle Variables
	Clearing Handle Variables
	Deleting Handle Objects

	Testing for Handle or Value Class

	Destroying Objects
	Object Lifecycle
	Difference Between clear and delete

	Data Import and Export
	Overview
	Supported File Types
	Binary Data from a MATLAB Session
	Text Data
	Graphics Files
	Audio and Audio/Video Data
	Spreadsheets
	Data from the System Clipboard
	Information from the Internet

	Other MATLAB I/O Capabilities
	Using the Import Wizard
	Mapping Files to Memory
	Low-Level File I/O
	Importing Data with Toolboxes

	Functions Used in File Management

	Supported File Formats
	Using the Import Wizard
	Overview
	Starting the Import Wizard
	Importing from a File
	Importing from the Clipboard
	Importing to a Structure

	Previewing Contents of the File or Clipboard [Text only]
	Specifying Delimiters and Header Format [Text only]
	Delimiters
	Header Format
	Generate M-Code Checkbox

	Determining Assignment to Variables
	Structuring the Output Data
	Selecting Which Variables to Write to the Workspace

	Automated M-Code Generation
	Example of M-Code Generation

	Writing Data to the Workspace
	Examples

	Exporting Data to MAT-Files
	MAT-Files
	Using the save Function
	Saving Structures
	Appending to an Existing File
	Data Compression
	Evaluating When to Compress

	Unicode Character Encoding
	Optional Output Formats
	Saving in ASCII Format
	Saving in Version 4 Format

	Storage Requirements
	Saving from External Programs

	Importing Data From MAT-Files
	Using the load Function
	Previewing MAT-File Contents
	Loading Into a Structure
	Loading Binary Data
	Loading ASCII Data

	Importing Text Data
	The MATLAB Import Wizard
	Using Import Functions with Text Data
	Importing Numeric Text Data
	Importing Delimited ASCII Data Files
	Importing Mixed Alphabetic and Numeric Data
	Importing Data with Text Headers
	Importing Mixed Alphabetic and Numeric Data with a Delimiter
	Importing Large Data Sets

	Importing from XML Documents

	Exporting Text Data
	Overview
	Exporting Delimited ASCII Data Files
	Using the save Function
	Using the dlmwrite Function

	Using the diary Function to Export Data
	Exporting to XML Documents

	Working with Spreadsheets
	Microsoft Excel Spreadsheets
	Communicating with Excel Applications
	Getting Information about a File
	Exporting to a File
	Importing from a File
	Converting Dates

	Lotus 123 Spreadsheets
	Getting Information About the File
	Exporting to the File
	Importing from the File

	Working with Graphics Files
	Getting Information About Graphics Files
	Importing Graphics Data
	Exporting Graphics Data

	Working with Audio and Video Data
	Getting Information About Audio/Video Files
	Format-Specific Functions
	Using the General Multimedia Information Function

	Importing Audio/Video Data
	Reading Audio and Video Data from a File
	Recording Audio Data

	Exporting Audio/Video Data
	Exporting Audio Data
	Exporting Video Data in AVI Format
	Example: Creating an AVI file

	Using Low-Level File I/O Functions
	Overview
	Opening Files
	Specifying the Permission String
	Using the Returned File Identifier (fid)
	Opening Temporary Files and Directories

	Reading Binary Data
	Controlling the Number of Values Read
	Controlling the Data Type of Each Value

	Writing Binary Data
	Controlling Position in a File
	Setting and Querying the File Position
	Example of Using fseek And ftell

	Reading Strings Line by Line from Text Files
	Reading Formatted ASCII Data
	Differences Between the MATLAB fscanf and the C fscanf

	Writing Formatted Text Files
	Closing a File

	Accessing Files with Memory-Mapping
	Overview of Memory-Mapping
	Benefits of Memory-Mapping
	Limitations of MATLAB Memory-Mapping
	Byte Ordering
	When to Use Memory-Mapping

	The memmapfile Class
	Properties of the memmapfile Class

	Constructing a memmapfile Object
	Constructing the Object with Default Property Values
	Changing Property Values
	Selecting the File to Map
	Setting the Start of the Mapped Region
	Identifying the Contents of the Mapped Region
	Mapping of the Example File
	Repeating a Format Scheme
	Setting the Type of Access

	Reading a Mapped File
	Improving Performance
	Example 1 — Reading a Single Data Type
	Example 2 — Formatting File Data as a Matrix
	Example 3 — Reading Multiple Data Types
	Example 4 — Modifying Map Parameters

	Writing to a Mapped File
	Dimensions of the Data Field
	Writing Matrices to a Mapped File
	Selecting Appropriate Data Types
	Working with Copies of the Mapped Data
	Invalid Syntax for Writing to Mapped Memory

	Methods of the memmapfile Class
	Using the disp Method
	Using the get Method

	Deleting a Memory Map
	The Effect of Shared Data Copies On Performance

	Memory-Mapping Demo
	The send Function
	The answer Function
	Running the Demo

	Exchanging Files over the Internet
	Overview
	Downloading Web Content and Files
	Example — Using the urlread Function
	Example — Using the urlwrite Function

	Creating and Decompressing Zip Archives
	Example — Using the zip Function

	Sending E-Mail
	Example — Using the sendmail Function

	Performing FTP File Operations
	Example — Retrieving a File from an FTP Server
	Summary of FTP Functions

	Scientific Data File Formats
	Common Data Format (CDF) Files
	Getting Information About CDF Files
	Importing Data from a CDF File
	Speeding Up Read Operations
	Representing CDF Time Values

	Exporting Data to a CDF File

	Network Common Data Form (netCDF) Files
	Overview
	Mapping netCDF API Syntax to MATLAB Function Syntax
	Mapping MATLAB Classes to netCDF Data Types

	Example: Exploring the Contents of a netCDF File
	Example: Reading Data from a netCDF File
	Example: Storing Data in a netCDF File

	Flexible Image Transport System (FITS) Files
	Getting Information About FITS Files
	Importing Data from a FITS File

	Hierarchical Data Format (HDF5) Files
	Using the MATLAB High-Level HDF5 Functions
	Determining the Contents of an HDF5 File
	Importing Data from an HDF5 File
	Exporting Data to HDF5 Files
	Mapping HDF5 Data Types to MATLAB Data Types

	Using the MATLAB Low-Level HDF5 Functions
	Mapping HDF5 Function Syntax to MATLAB Function Syntax
	Mapping Between HDF5 Data Types and MATLAB Data Types
	Example: Using the MATLAB HDF5 Low-level Functions
	Preserving the Correct Layout of Your Data

	Hierarchical Data Format (HDF4) Files
	Using the HDF Import Tool
	Step 1: Opening an HDF4 File in the HDF Import Tool
	Step 2: Selecting a Data Set in an HDF File
	Step 3: Specifying a Subset of the Data (Optional)
	Step 4: Importing Data and Metadata
	Step 5: Closing HDF Files and the HDF Import Tool

	Using the HDF Import Tool Subsetting Options
	HDF Scientific Data Sets (SD)
	HDF Vdata
	HDF-EOS Grid Data
	Pixels . You can import a subset of the pixels in a Grid data se

	HDF-EOS Point Data
	HDF-EOS Swath Data
	User-Defined . You can optionally also subset a swath data set b

	HDF Raster Image Data

	Using the MATLAB HDF4 High-Level Functions
	Using hdfinfo to Get Information About an HDF4 File
	Using hdfread to Import Data from an HDF4 File

	Using the HDF4 Low-Level Functions
	Understanding the HDF4 to MATLAB Syntax Mapping
	Example: Importing Data Using the HDF4 SD API Functions
	Example: Exporting Data Using the HDF4 SD API Functions
	Using the MATLAB HDF4 Utility API

	Error Handling
	Error Reporting in a MATLAB Application
	Overview
	Getting an Exception at the Command Line
	Determine the Fault from the Error Message
	Review the Failing Code
	Step Through the Code in the Debugger

	Getting an Exception in Your Program Code
	Generating a New Exception

	Capturing Information About the Error
	Overview
	The MException Class
	Object Constructor

	Properties of the MException Class
	Message Identifiers
	Text of the Error Message
	The Call Stack
	The Cause Array

	Methods of the MException Class

	Throwing an Exception
	Responding to an Exception
	Overview
	The try-catch Statement
	The Try Block
	The Catch Block

	Suggestions on How to Handle an Exception

	Warnings
	Reporting a Warning
	Formatted Message Strings
	Message Identifiers

	Identifying the Cause

	Warning Control
	Overview
	Warning Statements
	Attaching an Identifier to the Warning Statement

	Warning Control Statements
	Warning States
	Message Identifiers
	Example 1 — Enabling a Selected Warning
	Example 2 — Disabling the Most Recent Warning

	Output from Control Statements
	Output Structure Array

	Saving and Restoring State
	Example 1 — Performing an Explicit Query
	Example 2 — Performing an Implicit Query

	Backtrace and Verbose Modes
	Example 1 — Displaying a Stack Trace on a Specific Warning
	Example 2 — Enabling Verbose Warnings

	Debugging Errors and Warnings

	Program Scheduling
	Using a MATLAB Timer Object
	Overview
	Example: Displaying a Message

	Creating Timer Objects
	Creating the Object
	Naming the Object

	Working with Timer Object Properties
	Retrieving the Value of Timer Object Properties
	Setting the Value of Timer Object Properties
	Viewing a List of All Settable Properties

	Starting and Stopping Timers
	Starting a Timer
	Starting a Timer at a Specified Time
	Stopping Timer Objects
	Blocking the MATLAB Command Line

	Creating and Executing Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying Callback Functions Directly
	Putting Commands in a Callback Function
	Example: Writing a Callback Function

	Specifying the Value of Callback Function Properties

	Timer Object Execution Modes
	Executing a Timer Callback Function Once
	Executing a Timer Callback Function Multiple Times
	Handling Callback Function Queuing Conflicts

	Deleting Timer Objects from Memory
	Deleting One or More Timer Objects
	Testing the Validity of a Timer Object

	Finding Timer Objects in Memory
	Finding All Timer Objects
	Finding Invisible Timer Objects

	Performance
	Analyzing Your Program’s Performance
	Overview
	The M-File Profiler Utility
	Stopwatch Timer Functions
	Measuring Smaller Programs
	Using tic and toc Versus the cputime Function

	Techniques for Improving Performance
	Vectorizing Loops
	Simple Example of Vectorizing
	Advanced Example of Vectorizing
	Functions Used in Vectorizing

	Preallocating Arrays
	Preallocation Functions
	Preallocating a Nondouble Matrix

	Use Distributed Arrays for Large Datasets
	When Possible, Replace for with parfor (Parallel for)
	Multithreading Capabilities in MATLAB
	Limiting M-File Size and Complexity
	Coding Loops in a MEX-File
	Assigning to Variables
	Changing a Variable’s Data Type or Dimension
	Assigning Real and Complex Numbers

	Operating on Real Data
	Using Appropriate Logical Operators
	Overloading Built-In Functions
	Functions Are Generally Faster Than Scripts
	Load and Save Are Faster Than File I/O Functions
	Avoid Large Background Processes

	MATLAB Multiprocessing
	Overview
	Implicit Multiprocessing
	Explicit Multiprocessing

	Implicit Multiprocessing
	Platform Differences and Multithreaded Computation
	Enabling Multithreaded Computation
	Setting the Number of Threads Programmatically

	Explicit Multiprocessing

	Memory Usage
	Memory Allocation
	Memory Allocation for Arrays
	Creating and Modifying Arrays
	Copying Arrays
	Array Headers
	Function Arguments

	Data Structures and Memory
	Numeric Arrays
	Complex Arrays
	Sparse Matrices
	Cell Arrays
	Structures

	Memory Management Functions
	The whos Function

	Strategies for Efficient Use of Memory
	Ways to Reduce the Amount of Memory Required
	Load Only As Much Data As You Need
	Process Data By Blocks
	Avoid Creating Temporary Arrays
	Use Nested Functions to Pass Fewer Arguments

	Using Appropriate Data Storage
	Use the Appropriate Numeric Class
	Reduce the Amount of Overhead When Storing Data
	Import Data to the Appropriate MATLAB Class
	Make Arrays Sparse When Possible

	How to Avoid Fragmenting Memory
	Preallocate Contiguous Memory When Creating Arrays
	Allocate Your Larger Arrays First
	Long-Term Usage (Windows Systems Only)

	Reclaiming Used Memory
	Save Your Large Data Periodically to Disk
	Clear Old Variables from Memory When No Longer Needed

	Resolving “Out of Memory” Errors
	General Suggestions for Reclaiming Memory
	Setting the Process Limit
	Disabling Java VM on Startup
	Increasing System Swap Space
	UNIX Systems
	Linux Systems
	Windows XP Systems

	Using the 3GB Switch on Windows Systems
	Freeing Up System Resources on Windows Systems

	Programming Tips
	Introduction
	Command and Function Syntax
	Syntax Help
	Command and Function Syntaxes
	Command Line Continuation
	Completing Commands Using the Tab Key
	Recalling Commands
	Clearing Commands
	Suppressing Output to the Screen

	Help
	Using the Help Browser
	Help on Functions from the Help Browser
	Help on Functions from the Command Window
	Topical Help
	Paged Output
	Writing Your Own Help
	Help for Subfunctions and Private Functions
	Help for Methods and Overloaded Functions

	Development Environment
	Workspace Browser
	Using the Find and Replace Utility
	Commenting Out a Block of Code
	Creating M-Files from Command History
	Editing M-Files in EMACS

	M-File Functions
	M-File Structure
	Using Lowercase for Function Names
	Getting a Function’s Name and Path
	What M-Files Does a Function Use?
	Dependent Functions, Built-Ins, Classes

	Function Arguments
	Getting the Input and Output Arguments
	Variable Numbers of Arguments
	String or Numeric Arguments
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Program Development
	Planning the Program
	Using Pseudo-Code
	Selecting the Right Data Structures
	General Coding Practices
	Naming a Function Uniquely
	The Importance of Comments
	Coding in Steps
	Making Modifications in Steps
	Functions with One Calling Function
	Testing the Final Program

	Debugging
	The MATLAB Debug Functions
	More Debug Functions
	The MATLAB Graphical Debugger
	A Quick Way to Examine Variables
	Setting Breakpoints from the Command Line
	Finding Line Numbers to Set Breakpoints
	Stopping Execution on an Error or Warning
	Locating an Error from the Error Message
	Using Warnings to Help Debug
	Making Code Execution Visible
	Debugging Scripts

	Variables
	Rules for Variable Names
	Making Sure Variable Names Are Valid
	Do Not Use Function Names for Variables
	Checking for Reserved Keywords
	Avoid Using i and j for Variables
	Avoid Overwriting Variables in Scripts
	Persistent Variables
	Protecting Persistent Variables
	Global Variables

	Strings
	Creating Strings with Concatenation
	Comparing Methods of Concatenation
	Store Arrays of Strings in a Cell Array
	Converting Between Strings and Cell Arrays
	Search and Replace Using Regular Expressions

	Evaluating Expressions
	Find Alternatives to Using eval
	Assigning to a Series of Variables
	Short-Circuit Logical Operators
	Changing the Counter Variable within a for Loop

	MATLAB Path
	Precedence Rules
	File Precedence
	Adding a Directory to the Search Path
	Handles to Functions Not on the Path
	Making Toolbox File Changes Visible to MATLAB
	Making Nontoolbox File Changes Visible to MATLAB
	Change Notification on Windows

	Program Control
	Using break, continue, and return
	Using switch Versus if
	MATLAB case Evaluates Strings
	Multiple Conditions in a case Statement
	Implicit Break in switch-case
	Variable Scope in a switch
	Catching Errors with try-catch
	Nested try-catch Blocks
	Forcing an Early Return from a Function

	Save and Load
	Saving Data from the Workspace
	Loading Data into the Workspace
	Viewing Variables in a MAT-File
	Appending to a MAT-File
	Save and Load on Startup or Quit
	Saving to an ASCII File

	Files and Filenames
	Naming M-files
	Naming Other Files
	Passing Filenames as Arguments
	Passing Filenames to ASCII Files
	Determining Filenames at Run-Time
	Returning the Size of a File

	Input/Output
	File I/O Function Overview
	Common I/O Functions
	Readable File Formats
	Using the Import Wizard
	Loading Mixed Format Data
	Reading Files with Different Formats
	Interactive Input into Your Program

	Starting MATLAB
	Getting MATLAB to Start Up Faster

	Operating System Compatibility
	Executing O/S Commands from MATLAB
	Searching Text with grep
	Constructing Paths and Filenames
	Finding the MATLAB Root Directory
	Temporary Directories and Filenames

	Demos
	Demos Available with MATLAB

	For More Information
	Current CSSM
	Archived CSSM
	MATLAB Technical Support
	Tech Notes
	MATLAB Central
	MATLAB Newsletters (Digest, News & Notes)
	MATLAB Documentation
	MATLAB Index of Examples

	Index

	tables
	Integer Functions
	Floating-Point Functions
	Complex Number Functions
	Infinity and NaN Functions
	Class Identification Functions
	Output Formatting Functions
	Functions to Create Character Arrays
	Functions to Modify Character Arrays
	Functions to Read and Operate on Character Arrays
	Functions to Search or Compare Character Arrays
	Functions to Determine Class or Content
	Functions to Convert Between Numeric and String Classes
	Functions to Work with Cell Arrays of Strings as Sets
	Current Date and Time Functions
	Conversion Functions
	Utility Functions
	Timing Measurement Functions
	Character Types
	Character Representation
	Grouping Operators
	Nonmatching Operators
	Positional Operators
	Lookaround Operators
	Quantifiers
	Ordinal Token Operators
	Named Token Operators
	Conditional Expression Operators
	Dynamic Expression Operators
	Replacement String Operators
	Table 6-1 ASCII Data File Formats
	Table 6-2 ASCII Data Import Function Features
	Table 6-3 ASCII Data File Formats
	Table 6-4 ASCII Data Export Function Features
	Mapping Between HDF5 Atomic Data Types and MATLAB Data Types
	Mapping Between HDF5 Composite Data Types and MATLAB Data Types

